ax.plot(inner_ring[0, i:i + 2], inner_ring[1, i:i + 2]) ax.plot(outer_ring[0, i:i + 2], outer_ring[1, i:i + 2]) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) cur_axes = plt.gca() cur_axes.axes.get_xaxis().set_ticks([]) cur_axes.axes.get_yaxis().set_ticks([]) if SAVE_SVG: plt.savefig("euclidean_center.svg", bbox_inches='tight') if SAVE_PNG: plt.savefig("euclidean_center.png", dpi=300, bbox_inches='tight') all_rings = [ring.T for ring in all_rings] vwb = VOT(all_rings[0][0:-1:5, :], all_rings, verbose=False) tick = time.clock() vwb.cluster(lr=0.5, max_iter_h=3000, max_iter_y=1) tock = time.clock() print(tock - tick) if SAVE_OR_PLOT_FIGURE: fig = plt.figure(figure_id, figsize=(2, 2)) ax = fig.add_subplot(111) for i in range(N): plt.plot(vwb.x[i][:, 0], vwb.x[i][:, 1], linewidth=5, c='lightgray') size = vwb.y.shape[0] // 2 ax.set_prop_cycle( cycler(color=[cm(1. * i / (size - 1)) for i in range(size - 1)]))
from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=K, init=y).fit(x) label = kmeans.predict(x) y = kmeans.cluster_centers_ color_map = np.array([[237, 125, 49, 255], [112, 173, 71, 255], [91, 155, 213, 255]]) / 255 # ---------------VWB--------------- for reg in [0.5, 2, 1e9]: y_copy = y.copy() x_copy = x.copy() vot = VOT(y_copy, [x_copy], verbose=False) vot.cluster(lr=0.5, max_iter_h=1000, max_iter_y=1, beta=0.5, reg=reg) idx = vot.idx fig = plt.figure(figsize=(4, 4)) ce = color_map[idx[0]] utils.scatter_otsamples(vot.y, vot.x[0], size_p=30, marker_p='o', color_x=ce, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, facecolor_p='none') plt.axis('off') # plt.savefig(str(int(reg)) + ".svg", bbox_inches='tight') plt.savefig(str(reg) + ".png", dpi=300, bbox_inches='tight') plt.figure(figsize=(4, 4))
cov1 = [[0.03, 0], [0, 0.01]] x1, y1 = np.random.multivariate_normal(mean1, cov1, 5000).T x1 = np.stack((x1, y1), axis=1).clip(-0.99, 0.99) mean2 = [0.5, 0.5] cov2 = [[0.01, 0.], [0., 0.03]] x2, y2 = np.random.multivariate_normal(mean2, cov2, 1000).T x2 = np.stack((x2, y2), axis=1).clip(-0.99, 0.99) mean = [0.0, -0.5] cov = [[0.02, 0], [0, 0.02]] K = 50 x, y = np.random.multivariate_normal(mean, cov, K).T x = np.stack((x, y), axis=1).clip(-0.99, 0.99) vot = VOT(x, [x1, x2], verbose=False) vot.cluster(max_iter_h=3000, max_iter_y=1) idx = vot.idx xmin, xmax, ymin, ymax = -1., 1., 0., 1. for k in [21]: plt.figure(figsize=(8, 4)) for i in range(2): ce = np.array(plt.get_cmap('viridis')(idx[i] / (K - 1))) utils.scatter_otsamples(vot.y, vot.x[i], size_p=30, marker_p='o', color_e=ce, xmin=xmin,
cys = cys_base[labels] ys, xs = 15, 3 plt.figure(figsize=(12, 8)) plt.subplot(231) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.grid(True) plt.title('w/o reg before') plt.scatter(x[:, 0], x[:, 1], s=xs, color=utils.COLOR_LIGHT_GREY) for p, cy in zip(y, cys): plt.scatter(p[0], p[1], s=ys, color=cy) # ------- run WM -------- # vot = VOT(y.copy(), [x.copy()], label_y=labels, verbose=False) print("running Wasserstein clustering...") tick = time.time() vot.cluster(max_iter_y=1) tock = time.time() print("total running time : {0:g} seconds".format(tock - tick)) cxs = cxs_base[vot.label_x[0]] # ------ plot map ------- # fig232 = plt.subplot(232) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.grid(True) plt.title('w/o reg map') for p, p0 in zip(vot.y, vot.y_original):
downsample = 100 x1_down = x1[0:-1:downsample, :] # ------- run WM -------- # iterP = 8 downsample = 10 x = x1_down.copy() x1_copy = x1.copy() x2_copy = x2.copy() x3_copy = x3.copy() vwb = VOT(x, [x1_copy, x2_copy, x3_copy], verbose=False) output = vwb.cluster(lr=1, max_iter_h=3000, max_iter_y=iterP, lr_decay=500, beta=0.5, icp=True) fig2 = plt.figure(figsize=(8, 8)) # ax2 = fig2.add_subplot(111, projection='3d') # outE1 = vwb.x[0] outE2 = vwb.x[1] outE3 = vwb.x[2] outP = vwb.y ax2.scatter(x1[:, 0], x1[:, 1], x1[:, 2], s=dot_size, color=color_map[2], alpha=alpha) ax2.scatter(x2[:, 0], x2[:, 1], x2[:, 2], s=dot_size, color=color_map[1], alpha=alpha) ax2.scatter(x3[:, 0], x3[:, 1], x3[:, 2], s=dot_size, color=color_map[2], alpha=alpha)
y1 = np.cos(u0) * np.sin(v0) y2 = np.sin(u0) * np.sin(v0) y3 = np.cos(v0) plt.show() x1 = np.stack((x11, x12, x13), axis=1).clip(-0.99, 0.99) x2 = np.stack((x21, x22, x23), axis=1).clip(-0.99, 0.99) y = np.stack((y1, y2, y3), axis=1).clip(-0.99, 0.99) y /= np.linalg.norm(y, axis=1, keepdims=True) x1 /= np.linalg.norm(x1, axis=1, keepdims=True) x2 /= np.linalg.norm(x2, axis=1, keepdims=True) vwb = VOT(y, [x1, x2], verbose=False) output = vwb.cluster(max_iter_h=5000, max_iter_y=1, space='spherical') idx = output['idx'] xmin, xmax, ymin, ymax = -1.0, 1.0, -0.5, 0.5 u, v = np.mgrid[np.pi/4:np.pi*5/4:1000j, np.pi/2:np.pi*3/2:1000j] gx = np.cos(u)*np.sin(v) gy = np.sin(u)*np.sin(v) gz = np.cos(v) for k in [12]: fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') colors = plt.cm.magma((gx - gx.min()) / float((gx - gx.min()).max())) ax.plot_surface(gx * 0.95, gy * 0.95, gz * 0.95, antialiased=False, facecolors=colors, linewidth=0, shade=False) for i in range(2):
cov1 = [[0.02, 0], [0, 0.02]] x1, y1 = np.random.multivariate_normal(mean1, cov1, 5000).T x1 = np.stack((x1, y1), axis=1).clip(-0.99, 0.99) mean2 = [0.5, 0.] cov2 = [[0.02, 0], [0, 0.02]] x2, y2 = np.random.multivariate_normal(mean2, cov2, 5000).T x2 = np.stack((x2, y2), axis=1).clip(-0.99, 0.99) mean = [0.0, -0.5] cov = [[0.02, 0], [0, 0.02]] K = 50 x, y = np.random.multivariate_normal(mean, cov, K).T x = np.stack((x, y), axis=1).clip(-0.99, 0.99) vot = VOT(x, [x1, x2], verbose=False) output = vot.cluster(max_iter_h=5000, max_iter_y=1) idx = vot.idx xmin, xmax, ymin, ymax = -1.0, 1.0, -0.5, 0.5 for k in [33]: plt.figure(figsize=(8, 4)) for i in range(2): ce = np.array(plt.get_cmap('viridis')(idx[i] / (K - 1))) utils.scatter_otsamples(vot.y, vot.x[i], size_p=30, marker_p='o', color_x=ce, xmin=xmin,
cys = cys_base[labels] ys, xs = 15, 3 plt.figure(figsize=(12, 7)) plt.subplot(231) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.grid(True) plt.title('w/o reg before') plt.scatter(x[:, 0], x[:, 1], s=xs, color=utils.COLOR_LIGHT_GREY) for p, cy in zip(y, cys): plt.scatter(p[0], p[1], s=ys, color=cy) # ------- run WM -------- # vot = VOT(y.copy(), [x.copy()], label_y=labels, verbose=False) print("running Wasserstein clustering...") tick = time.time() vot.cluster(lr=0.5, max_iter_y=1) tock = time.time() print("total running time : {0:.4f} seconds".format(tock - tick)) cxs = cxs_base[vot.label_x[0]] # ------ plot map ------- # fig232 = plt.subplot(232) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.grid(True) plt.title('w/o reg map') for p, p0 in zip(vot.y, vot.y_original):
mean2 = [0.5, 0.] cov2 = [[0.02, 0], [0, 0.02]] x2, y2 = np.random.multivariate_normal(mean2, cov2, 5000).T x2 = np.stack((x2, y2), axis=1).clip(-0.99, 0.99) wd = np.zeros((50, 50)) k = 0 for K in [50, 125, 250, 500, 750, 1000, 1500, 2500]: for i in range(10): mean = [0.0, -0.5] cov = [[0.02, 0], [0, 0.02]] x, y = np.random.multivariate_normal(mean, cov, K).T x = np.stack((x, y), axis=1).clip(-0.99, 0.99) vwb = VOT(x, [x1, x2], verbose=False) output = vwb.cluster(lr=1, max_iter_h=10000, max_iter_y=1, beta=0.9, lr_decay=500) wd[k, i] = output['wd'] print(output['wd']) # np.savetxt(f, output['wd'], delimiter=',') del x del vwb k += 1 # np.savetxt('ship_error/K_total.csv', wd, delimiter=',') import ot import ot.plot M = ot.dist(x1, x2, 'sqeuclidean')
plt.figure(figsize=(8, 8)) minx, maxx, miny, maxy = -1, 1, -1, 1 plot_map = True # -------------------- # # ------- VOT -------- # # -------------------- # print('---- Running VOT ----') dist = cdist(y, x, 'sqeuclidean') mass_e = np.ones(N0) / N0 mass_p = np.ones(K) / K tick = time.clock() vot = VOT(y=y, x=x, verbose=False) output = vot.cluster(max_iter_y=1, max_iter_h=3000, lr=1, lr_decay=200, beta=0.9) tock = time.clock() print('total time: {0:.4f}'.format(tock-tick)) if plot_map: # ----- plot before ----- # plt.subplot(331) plt.xlim(minx, maxx) plt.ylim(miny, maxy) plt.grid(True) plt.title('before') plt.scatter(vot.x[0][:, 0], vot.x[0][:, 1], marker='x', color=utils.COLOR_RED) plt.scatter(p_coor_before[:, 0], p_coor_before[:, 1], marker='+', color=utils.COLOR_DARK_BLUE)
marker_p='o', color_e=ce, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, facecolor_p='none') plt.axis('off') # plt.savefig("kmeans.svg", bbox_inches='tight') plt.savefig("kmeans.png", dpi=300, bbox_inches='tight') # --------------- OT --------------- y_copy = y.copy() x_copy = x.copy() vwb = VOT(y_copy, [x_copy], verbose=False) output = vwb.cluster(lr=0.5, max_iter_h=20, max_iter_y=1, beta=0.5, keep_idx=True) idx, idxs = output['idx'], output['idxs'][0] for i in range(0, min(21, len(idxs))): fig = plt.figure(figsize=(4, 4)) ce = color_map[idxs[i]] utils.scatter_otsamples(vwb.y, vwb.x[0], nop=True, size_p=30, marker_p='o',
color='k', zorder=1) ax6.set_xlabel('R') ax6.set_ylabel('G') ax6.set_zlabel('B') # fig6.savefig("x3_histogram_kmeans1.svg", bbox_inches='tight') fig6.savefig("x3_histogram_kmeans1.png", dpi=300, bbox_inches='tight') # -------------- VWB ------------------ # x1 = x1.clip(-0.99, 0.99) x2 = x2.clip(-0.99, 0.99) x3 = x3.clip(-0.99, 0.99) x = C1_16.clip(-0.99, 0.99) vwb = VOT(x, [x1], verbose=False) vwb.cluster(lr=1, max_iter_h=5000, max_iter_y=1) idx = vwb.idx[0] x1_vwb_16 = vwb.y[idx, :] x1_vwb_16 = np.transpose(np.reshape(x1_vwb_16 * 255, (128, 128, 3)), (1, 0, 2)) imageio.imwrite("x1_vwb_16.png", x1_vwb_16) fig1 = plt.figure(figsize=(8, 8)) ax1 = fig1.add_subplot(111, projection='3d') ce2 = vwb.y[idx] p11 = vwb.y ax1.scatter(x1[:, 0], x1[:, 1], x1[:, 2], s=dot_size, color=ce2, alpha=alpha) ax1.xaxis.pane.fill = False ax1.yaxis.pane.fill = False ax1.zaxis.pane.fill = False ax1.scatter(p11[:, 0], p11[:, 1],