예제 #1
0
def circles(
    vector_data: Document,
    count,
    delta,
    quantization,
    layer_count,
    random_layer,
    layer,
    offset,
):

    start_layer_id = single_to_layer_id(layer, vector_data)
    for i in range(count):
        if random_layer:
            lid = start_layer_id + random.randint(0, layer_count - 1)
        else:
            lid = start_layer_id + (i % layer_count)

        vector_data.add(
            LineCollection([
                circle(
                    (i + 1) * delta, quantization) + offset[0] + 1j * offset[1]
            ]),
            lid,
        )

    return vector_data
예제 #2
0
def test_document_bounds_empty_layer():
    doc = Document()

    doc.add(LineCollection([(0, 10 + 10j)]), 1)
    doc.add(LineCollection())

    assert doc.bounds() == (0, 0, 10, 10)
예제 #3
0
파일: dread.py 프로젝트: tatarize/vpype-dxf
def dread(
    document: vp.Document,
    file,
    quantization: float,
    simplify: bool,
    parallel: bool,
    query: str,
    groupby: str,
) -> vp.Document:
    """
    Extract geometries from a DXF file.
    """
    dxf = ezdxf.readfile(file)
    elements = []
    unit = dxf.header.get("$INSUNITS")

    # TODO: Load this into correct units.
    if unit is not None and unit != 0:
        du = units.DrawingUnits(96.0, unit="in")
        scale = du.factor(decode(unit))
    else:
        scale = 1

    all_entities_by_attribute = dxf.query(query=query).groupby(groupby)
    for group in all_entities_by_attribute.values():
        for entity in group:
            entity_to_svg(elements, dxf, entity, scale)
        lc = i_trample_your_api(elements, quantization, simplify, parallel)
        document.add(lc)
        elements.clear()
    return document
예제 #4
0
def efill(document: vp.Document, tolerance: float, distance: float):
    """
    Implements the Eulerian fill algorithm which fills any closed shapes with as few paths as there are contiguous
    regions. With scanlines to fill any shapes, even those with holes, with an even-odd fill order and direct pathing.

    """
    for layer in list(document.layers.values()
                      ):  # Add all the closed paths to the efill.
        efill = EulerianFill(distance)
        for p in layer:
            if np.abs(p[0] - p[-1]) <= tolerance:
                efill += vp.as_vector(p)
        fill = efill.get_fill()  # Get the resulting fill.

        lc = vp.LineCollection()
        cur_line = []
        for pt in fill:
            if pt is None:
                if cur_line:
                    lc.append(cur_line)
                cur_line = []
            else:
                cur_line.append(complex(pt[0], pt[1]))
        if cur_line:
            lc.append(cur_line)
        document.add(lc)
    return document
예제 #5
0
def test_document_empty_copy():
    doc = Document()
    doc.add(LineCollection([(0, 1)]), 1)
    doc.page_size = 3, 4

    new_doc = doc.empty_copy()
    assert len(new_doc.layers) == 0
    assert new_doc.page_size == (3, 4)
예제 #6
0
def test_document_lid_iteration():
    lc = LineCollection([(0, 1 + 1j)])
    doc = Document()
    doc.add(lc, 1)

    for lc in doc.layers_from_ids([1, 2, 3, 4]):
        lc.append([3, 3 + 3j])

    assert doc.count() == 1
    assert len(doc.layers[1]) == 2
예제 #7
0
def iread(document: vp.Document, input_file: str, color, distance: float):
    """
    Image Read and Vectorization.

    This is a pure python polygon producer. The goal of this project is to
    vector trace images according to some given criteria. The default mode
    does black v. white. However, multiple colors can be specified along with
    a color distance and those colors will be extracted and traced.
    """
    image = Image.open(input_file)
    width, height = image.size
    if len(color) == 0:
        if image.mode != 'L':
            image = image.convert('L')
        image = image.point(lambda e: int(e > 127) * 255)
        lc = vp.LineCollection()
        document.add(lc)
        for points in _vectrace(image.load(), width, height):
            lc.append(points)
        return document

    distance_sq = distance * distance

    def dist(c, pixel):
        r = c.red - pixel[0]
        g = c.green - pixel[1]
        b = c.blue - pixel[2]
        return r * r + g * g + b * b <= distance_sq

    if image.mode != "RGBA":
        image = image.convert("RGBA")

    for c in color:
        v = Image.new('L', image.size, 255)
        v_data = v.load()
        new_data = image.load()
        for y in range(height):
            for x in range(width):
                pixel = new_data[x, y]
                if pixel[3] == 0:
                    continue
                if dist(c, pixel):
                    new_data[x, y] = (255, 255, 255, 0)
                    v_data[x, y] = 0

        lc = vp.LineCollection()
        document.add(lc)
        for points in _vectrace(v_data, width, height):
            lc.append(points)
    return document
예제 #8
0
def eread(document: vp.Document, filename: str):
    # populate the vp_source[s] properties
    document.set_property(vp.METADATA_FIELD_SOURCE,
                          pathlib.Path(filename).absolute())
    document.add_to_sources(filename)

    pattern = EmbPattern(filename)
    for stitches, color in pattern.get_as_stitchblock():
        if len(stitches) == 0:
            continue
        lc = vp.LineCollection()
        lc.scale(1.0 / _EMB_SCALE_FACTOR)
        stitch_block = np.asarray(stitches, dtype="float")
        stitch_block = stitch_block[..., 0] + 1j * stitch_block[..., 1]
        lc.append(stitch_block)
        lc.set_property(vp.METADATA_FIELD_COLOR, vp.Color(color.hex_color()))
        document.add(lc, with_metadata=True)
    return document
예제 #9
0
def test_ops_on_document_with_emtpy_layer():
    doc = Document()
    lc = LineCollection()
    doc.add(lc, 1)
    _all_document_ops(doc)
예제 #10
0
def test_document_bounds():
    doc = Document()
    doc.add(LineCollection([(-10, 10), (0, 0)]), 1)
    doc.add(LineCollection([(0, 0), (-10j, 10j)]), 2)
    assert doc.bounds() == (-10, -10, 10, 10)
예제 #11
0
def mdgrid(
    document: vp.Document,
    seed: Optional[int],
    size,
    count,
    pen_width,
    fat_grid,
    global_rate,
    rate_fill,
    rate_gradient,
    rate_bigdot,
    rate_star,
    rate_hatch,
):
    """Create nice random grids with stuff in them."""

    if len(rate_fill) == 0 and global_rate is not None:
        rate_fill = [global_rate]
    rate_gradient = check_default(rate_gradient, global_rate)
    rate_bigdot = check_default(rate_bigdot, global_rate)
    rate_star = check_default(rate_star, global_rate)
    rate_hatch = check_default(rate_hatch, global_rate)

    logging.info(
        f"mdgrid: rates: fill = {rate_fill}, gradient = {rate_gradient}, "
        f"bigdot = {rate_bigdot}, star = {rate_star}, hatch = {rate_hatch}")

    # handle seed
    if seed is None:
        seed = random.randint(0, int(1e9))
        logging.info(f"mdgrid: no seed provided, generating one ({seed})")
    np.random.seed(seed)
    random.seed(seed)

    grid_lc = vp.LineCollection()

    # build the grid
    col_widths = distribute_widths(count[0], size[0])
    row_widths = distribute_widths(count[1], size[1])
    col_seps = np.hstack([0, np.cumsum(col_widths)])
    row_seps = np.hstack([0, np.cumsum(row_widths)])

    # outer boundaries must be a single loop (for fat grid to work nicely)
    grid_lc.append([
        col_seps[0] + row_seps[0] * 1j,
        col_seps[0] + row_seps[-1] * 1j,
        col_seps[-1] + row_seps[-1] * 1j,
        col_seps[-1] + row_seps[0] * 1j,
        col_seps[0] + row_seps[0] * 1j,
    ])
    grid_lc.extend([x + row_seps[0] * 1j, x + row_seps[-1] * 1j]
                   for x in col_seps)
    grid_lc.extend([y * 1j + col_seps[0], y * 1j + col_seps[-1]]
                   for y in row_seps)

    # implement fat grid
    fat_grid_lc = vp.LineCollection()
    if fat_grid:
        mls = grid_lc.as_mls()
        fat_grid_lc.extend(
            unary_union([
                mls_parallel_offset(mls, pen_width, "left"),
                mls_parallel_offset(mls, pen_width, "right"),
            ]))

    # generate content in each cell
    fill_lcs = [vp.LineCollection() for _ in range(len(rate_fill))]
    grad_lc = vp.LineCollection()
    bigdot_lc = vp.LineCollection()
    star_lc = vp.LineCollection()
    hatch_lc = vp.LineCollection()
    for (x, y) in itertools.product(range(count[0]), range(count[1])):
        rect = (
            col_seps[x],
            row_seps[y],
            col_seps[x + 1] - col_seps[x],
            row_seps[y + 1] - row_seps[y],
        )

        filled = False
        for i, r in enumerate(rate_fill):
            if random.random() < r:
                fill_lcs[i].extend(generate_fill(rect, pen_width))
                filled = True
                break
        if not filled:
            if random.random() < rate_gradient:
                grad_lc.extend(
                    generate_dot_gradient(rect, pen_width, density=0.3))
            elif random.random() < rate_bigdot:
                bigdot_lc.extend(
                    generate_big_dot_gradient(rect, pen_width, 3,
                                              density=0.01))
            elif random.random() < rate_star:
                star_lc.extend(generate_star(rect, line_count=20))
            elif random.random() < rate_hatch:
                hatch_lc.extend(generate_hatch(rect))

    # populate vector data with layer content
    document.add(grid_lc, 1)
    document.add(fat_grid_lc, 2)

    document.add(star_lc, 3)
    document.add(hatch_lc, 4)

    document.add(grad_lc, 5)

    document.add(bigdot_lc, 6)

    for i, lc in enumerate(fill_lcs):
        document.add(lc, 7 + i)

    return document
예제 #12
0
파일: read.py 프로젝트: vmario89/vpype
def read(
    document: Document,
    file,
    single_layer: bool,
    layer: Optional[int],
    quantization: float,
    simplify: bool,
    parallel: bool,
    no_crop: bool,
    display_size: Tuple[float, float],
    display_landscape: bool,
) -> Document:
    """Extract geometries from a SVG file.

    By default, the `read` command attempts to preserve the layer structure of the SVG. In this
    context, top-level groups (<svg:g>) are each considered a layer. If any, all non-group,
    top-level SVG elements are imported into layer 1.

    The following logic is used to determine in which layer each SVG top-level group is
    imported:

        - If a `inkscape:label` attribute is present and contains digit characters, it is \
stripped of non-digit characters the resulting number is used as target layer. If the \
resulting number is 0, layer 1 is used instead.

        - If the previous step fails, the same logic is applied to the `id` attribute.

        - If both previous steps fail, the target layer matches the top-level group's order \
of appearance.

    Using `--single-layer`, the `read` command operates in single-layer mode. In this mode, \
all geometries are in a single layer regardless of the group structure. The current target \
layer is used default and can be specified with the `--layer` option.

    This command only extracts path elements as well as primitives (rectangles, ellipses,
    lines, polylines, polygons). Other elements such as text and bitmap images are discarded,
    and so is all formatting.

    All curved primitives (e.g. bezier path, ellipses, etc.) are linearized and approximated by
    polylines. The quantization length controls the maximum length of individual segments.

    Optionally, a line simplification with tolerance set to quantization can be applied on the
    SVG's curved element (e.g. circles, ellipses, arcs, bezier curves, etc.). This is enabled
    with the `--simplify` flag. This process reduces significantly the number of segments used
    to approximate the curve while still guaranteeing an accurate conversion, but may increase
    the execution time of this command.

    The `--parallel` option enables multiprocessing for the SVG conversion. This is recommended
    ONLY when using `--simplify` on large SVG files with many curved elements.

    By default, the geometries are cropped to the SVG boundaries defined by its width and
    length attributes. The crop operation can be disabled with the `--no-crop` option.

    In general, SVG boundaries are determined by the `width` and `height` of the top-level
    <svg> tag. However, the some SVG may have their width and/or height specified as percent
    value or even miss them altogether (in which case they are assumed to be set to 100%). In
    these cases, vpype considers by default that 100% corresponds to a A4 page in portrait
    orientation. The options `--display-size FORMAT` and `--display-landscape` can be used
    to specify a different format.

    Examples:

        Multi-layer import:

            vpype read input_file.svg [...]

        Single-layer import:

            vpype read --single-layer input_file.svg [...]

        Single-layer import with target layer:

            vpype read --single-layer --layer 3 input_file.svg [...]

        Multi-layer import with specified quantization and line simplification enabled:

            vpype read --quantization 0.01mm --simplify input_file.svg [...]

        Multi-layer import with cropping disabled:

            vpype read --no-crop input_file.svg [...]
    """

    width, height = display_size
    if display_landscape:
        width, height = height, width

    if single_layer:
        lc, width, height = read_svg(
            file,
            quantization=quantization,
            crop=not no_crop,
            simplify=simplify,
            parallel=parallel,
            default_width=width,
            default_height=height,
        )

        document.add(lc, single_to_layer_id(layer, document))
        document.extend_page_size((width, height))
    else:
        if layer is not None:
            logging.warning("read: target layer is ignored in multi-layer mode")
        document.extend(
            read_multilayer_svg(
                file,
                quantization=quantization,
                crop=not no_crop,
                simplify=simplify,
                parallel=parallel,
                default_width=width,
                default_height=height,
            )
        )

    return document
예제 #13
0
def pixelart(document: vp.Document, image, mode, pen_width: float):
    """Plot pixel art.

    Two modes are available:
    - "big" creates a square spiral for each pixel
    - "line" create single horizontal lines for contiguous pixels of the same color
    """

    # this should be dealt with by add_to_source() in a future release
    document.set_property(vp.METADATA_FIELD_SOURCE, pathlib.Path(image).absolute())
    document.add_to_sources(image)

    img = imageio.imread(image, pilmode="RGBA")
    colors = np.unique(img[:, :, 0:3][img[:, :, 3] == 255], axis=0)

    if mode == "big":
        for col_idx, color in enumerate(colors, start=1):
            indice_i, indice_j = np.nonzero(
                np.all(img[:, :, 0:3] == color, axis=2) & (img[:, :, 3] == 255)
            )

            lines = []
            for i, j in zip(indice_j, indice_i):
                line = np.array(PIXEL_TRAJECTORY) + i * PIXEL_OFFSET + j * PIXEL_OFFSET * 1j
                line *= pen_width

                lines.append(line)

            document.add(vp.LineCollection(lines), col_idx)
    elif mode == "line":
        for row_idx, line in enumerate(img):
            start = 0
            while True:
                while start < len(line) and line[start, 3] != 255:
                    start += 1

                # loop ending condition
                if start == len(line):
                    break

                # find the end of the current pixel run
                end = start
                while (
                    end < len(line)
                    and np.all(line[end, 0:3] == line[start, 0:3])
                    and line[end, 3] == 255
                ):
                    end += 1

                #
                layer_id = np.where(np.all(colors == line[start, 0:3], axis=1))[0][0] + 1
                segment = np.array([row_idx * 1j + (start - 0.1), row_idx * 1j + (end - 0.9)])
                segment *= pen_width
                document.add(vp.LineCollection([segment]), layer_id)

                # move to the next line
                start = end

    for col_idx, color in enumerate(colors, start=1):
        document.layers[col_idx].set_property(vp.METADATA_FIELD_COLOR, vp.Color(*color))
        document.layers[col_idx].set_property(vp.METADATA_FIELD_PEN_WIDTH, pen_width)

    return document