spike_ready=False, batch_size=batch_size, shuffle=shuffle) test_loader, test_dataset = get_testLoader(data_dir, spike_ready=False, batch_size=batch_size, shuffle=shuffle) # Initialize models model_B = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features=number_of_features_B, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, model_name=model_name_B, header=header_B, device=device) model_B.to(device) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size,
test_loader, test_dataset = get_testLoader(data_dir, spike_ready=False, batch_size=batch_size, shuffle=shuffle) # In[6]: # Create model model = VRAEC(num_class=num_class, sequence_length=sequence_length, number_of_features = number_of_features, hidden_size = hidden_size, hidden_layer_depth = hidden_layer_depth, latent_length = latent_length, batch_size = batch_size, learning_rate = learning_rate, n_epochs = n_epochs, dropout_rate = dropout_rate, cuda = cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload = logDir, model_name=model_name, header=header, device = device) model.to(device) # In[7]:
test_loader, test_dataset = get_testLoader(data_dir, spike_ready=False, batch_size=batch_size, shuffle=shuffle) # In[5]: model_B_pretrained = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features=number_of_features_B, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload=logDir, model_name=model_name_B, header=header_B, device=device) model_B_pretrained_dir = logDir + model_name_B + '.pt' if device == torch.device('cpu'): model_B_pretrained.load_state_dict( torch.load(model_B_pretrained_dir, map_location=torch.device('cpu'))) else: model_B_pretrained.load_state_dict(torch.load(model_B_pretrained_dir))
if torch.cuda.is_available(): device = torch.device("cuda:{}".format(args.cuda)) else: device = torch.device('cpu') print("Loading data \n, load {} kfold number, put to device: {}".format(args.kfold, device)) train_loader, val_loader, train_dataset, val_dataset = get_trainValLoader(data_dir, k=kfold_number, spike_ready=False, batch_size=batch_size, shuffle=shuffle) test_loader, test_dataset = get_testLoader(data_dir, spike_ready=False, batch_size=batch_size, shuffle=shuffle) model_B_pretrained = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features = number_of_features_B, hidden_size = hidden_size, hidden_layer_depth = hidden_layer_depth, latent_length = latent_length, batch_size = batch_size, learning_rate = learning_rate, n_epochs = n_epochs, dropout_rate = dropout_rate, cuda = cuda, model_name=model_name_B, header=header_B, device = device) model_B_pretrained_dir = logDir+model_name_B+'.pt' if device == torch.device('cpu'): model_B_pretrained.load_state_dict(torch.load(model_B_pretrained_dir, map_location=torch.device('cpu'))) else: model_B_pretrained.load_state_dict(torch.load(model_B_pretrained_dir)) model_B_pretrained.to(device) model_B_pretrained.eval()
test_loader, test_dataset = get_testLoader(data_dir, spike_ready=False, batch_size=batch_size, shuffle=shuffle) # In[6]: model_B = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features=number_of_features_B, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload=logDir, model_name=model_name_B, header=header_B, device=device) model_B.to(device) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth,