def get_fuel_tank_properties(vehicle,
                             tag,
                             fuel_tank_set_index=3,
                             slices_for_calculation=100):
    """This function computes the center of gravity, total possible fuel mass,
    the available volume of each fuel tank in the vehicle through a mass
    properties computation in OpenVSP.
    
    Assumptions:
    Fuel tanks exists in the fuselage and wings only
    All fuel tanks have unique names

    Source:
    N/A

    Inputs:
    vehicle.fuselages.*.Fuel_Tanks.*.tag     [-]
    vehicle.wings.*.Fuel_Tanks.*.tag         [-]

    Outputs:    
    vehicle.fuselages.*.Fuel_Tanks.*.mass_properties.
      center_of_gravity                      [m]
      fuel_mass_when_full                    [kg]
      fuel_volume_when_full                  [m^3]
    vehicle.wings.*.Fuel_Tanks.*.mass_properties.
      center_of_gravity                      [m]
      fuel_mass_when_full                    [kg]
      fuel_volume_when_full                  [m^3]
      

    Properties Used:
    N/A
    """

    # Reset OpenVSP to avoid including a previous vehicle
    vsp.ClearVSPModel()
    vsp.ReadVSPFile(tag + '.vsp3')

    # Extract fuel tanks from vehicle
    fuel_tanks = get_fuel_tanks(vehicle)

    num_slices = slices_for_calculation  # Slices used to estimate mass distribution from areas in OpenVSP
    mass_props_output_file = tag + '_mass_props.txt'
    vsp.SetComputationFileName(vsp.MASS_PROP_TXT_TYPE, mass_props_output_file)
    print('Computing Fuel Tank Mass Properties... ')
    vsp.ComputeMassProps(fuel_tank_set_index, num_slices)
    print('Done')

    # Extract full tank mass properties from OpenVSP output file
    fo = open(mass_props_output_file)
    for line in fo:
        prop_list = line.split()
        try:
            if prop_list[0] in fuel_tanks:
                # Indices based on position in OpenVSP output (may change in the future)
                cg_x = float(prop_list[2])
                cg_y = float(prop_list[3])
                cg_z = float(prop_list[4])
                mass = float(prop_list[1])
                vol = float(prop_list[-1])
                if 'center_of_gravity' not in fuel_tanks[prop_list[
                        0]]:  # assumes at most two identical tank names
                    fuel_tanks[prop_list[0]].center_of_gravity = np.array(
                        [cg_x, cg_y, cg_z])
                    fuel_tanks[prop_list[0]].fuel_mass_when_full = mass
                    fuel_tanks[prop_list[0]].volume = vol
                else:
                    fuel_tanks[prop_list[0]].center_of_gravity = \
                        (fuel_tanks[prop_list[0]].center_of_gravity+np.array([cg_x,cg_y,cg_z]))/2.
                    fuel_tanks[prop_list[0]].fuel_mass_when_full += mass
                    fuel_tanks[prop_list[0]].volume += vol

        except IndexError:  # in case line is empty
            pass

    # Apply fuel tank properties to the vehicle
    vehicle = apply_properties(vehicle, fuel_tanks)

    return vehicle
예제 #2
0
def vsp_read(tag, units_type='SI'): 	
	"""This reads an OpenVSP vehicle geometry and writes it into a SUAVE vehicle format.
	Includes wings, fuselages, and propellers.

	Assumptions:
	1. OpenVSP vehicle is composed of conventionally shaped fuselages, wings, and propellers. 
	1a. OpenVSP fuselage: generally narrow at nose and tail, wider in center). 
	1b. Fuselage is designed in VSP as it appears in real life. That is, the VSP model does not rely on
	   superficial elements such as canopies, stacks, or additional fuselages to cover up internal lofting oddities.
	1c. This program will NOT account for multiple geometries comprising the fuselage. For example: a wingbox mounted beneath
	   is a separate geometry and will NOT be processed.
	2. Fuselage origin is located at nose. VSP file origin can be located anywhere, preferably at the forward tip
	   of the vehicle or in front (to make all X-coordinates of vehicle positive).
	3. Written for OpenVSP 3.16.1
	
	Source:
	N/A

	Inputs:
	1. A tag for an XML file in format .vsp3.
	2. Units_type set to 'SI' (default) or 'Imperial'

	Outputs:
	Writes SUAVE vehicle with these geometries from VSP:    (All values default to SI. Any other 2nd argument outputs Imperial.)
		Wings.Wing.    (* is all keys)
			origin                                  [m] in all three dimensions
			spans.projected                         [m]
			chords.root                             [m]
			chords.tip                              [m]
			aspect_ratio                            [-]
			sweeps.quarter_chord                    [radians]
			twists.root                             [radians]
			twists.tip                              [radians]
			thickness_to_chord                      [-]
			dihedral                                [radians]
			symmetric                               <boolean>
			tag                                     <string>
			areas.exposed                           [m^2]
			areas.reference                         [m^2]
			areas.wetted                            [m^2]
			Segments.
			  tag                                   <string>
			  twist                                 [radians]
			  percent_span_location                 [-]  .1 is 10%
			  root_chord_percent                    [-]  .1 is 10%
			  dihedral_outboard                     [radians]
			  sweeps.quarter_chord                  [radians]
			  thickness_to_chord                    [-]
			  airfoil                               <NACA 4-series, 6 series, or airfoil file>
			
		Fuselages.Fuselage.			
			origin                                  [m] in all three dimensions
			width                                   [m]
			lengths.
			  total                                 [m]
			  nose                                  [m]
			  tail                                  [m]
			heights.
			  maximum                               [m]
			  at_quarter_length                     [m]
			  at_three_quarters_length              [m]
			effective_diameter                      [m]
			fineness.nose                           [-] ratio of nose section length to fuselage effective diameter
			fineness.tail                           [-] ratio of tail section length to fuselage effective diameter
			areas.wetted                            [m^2]
			tag                                     <string>
			segment[].   (segments are in ordered container and callable by number)
			  vsp.shape                               [point,circle,round_rect,general_fuse,fuse_file]
			  vsp.xsec_id                             <10 digit string>
			  percent_x_location
			  percent_z_location
			  height
			  width
			  length
			  effective_diameter
			  tag
			vsp.xsec_num                              <integer of fuselage segment quantity>
			vsp.xsec_surf_id                          <10 digit string>
	
		Propellers.Propeller.
			location[X,Y,Z]                            [radians]
			rotation[X,Y,Z]                            [radians]
			prop_attributes.tip_radius                 [m]
		        prop_attributes.hub_radius                 [m]
			thrust_angle                               [radians]
	
	Properties Used:
	N/A
	"""  	
	
	vsp.ClearVSPModel() 
	vsp.ReadVSPFile(tag)	
	
	vsp_fuselages = []
	vsp_wings     = []	
	vsp_props     = []
	
	vsp_geoms     = vsp.FindGeoms()
	geom_names    = []

	vehicle     = SUAVE.Vehicle()
	vehicle.tag = tag

	if units_type == 'SI':
		units_type = 'SI' 
	else:
		units_type = 'Imperial' 

	# The two for-loops below are in anticipation of an OpenVSP API update with a call for GETGEOMTYPE.
	# This print function allows user to enter VSP GeomID manually as first argument in vsp_read functions.
	
	print("VSP geometry IDs: ")	
	
	# Label each geom type by storing its VSP geom ID. (The API call for GETGEOMTYPE was not released as of 8/9/18, v 3.16.1)
	
	for geom in vsp_geoms: 
		geom_name = vsp.GetGeomName(geom)
		geom_names.append(geom_name)
		print(str(geom_name) + ': ' + geom)
	
	# -----------------------------
	# MANUAL VSP ENTRY & PROCESSING
	# -----------------------------		
	
	#fuselage = read_vsp_fuselage(fuselage_id, units_type=units_type) # Replace fuselage_id manually.
	#vehicle.append_component(fuselage)
	
	#wing = read_vsp_wing(wing_id, units_type=units_type)		# Replace wing_id manually.
	#vehicle.append_component(wing)		
	
	#prop = read_vsp_prop(prop_id, units_type=units_type)		# Replace prop_id manually.	
	#vehicle.append_component(prop)
	

	# --------------------------------
	# AUTOMATIC VSP ENTRY & PROCESSING
	# --------------------------------		
		
	#for geom in vsp_geoms:
		#if vsp.GETGEOMTYPE(str(geom)) == 'FUSELAGE':
			#vsp_fuselages.append(geom)
		#if vsp.GETGEOMTYPE(str(geom)) == 'WING':
			#vsp_wings.append(geom)
		#if vsp.GETGEOMTYPE(str(geom)) == 'PROP':
			#vsp_props.append(geom)
	
	# Read VSP geoms and store in SUAVE components.
	
	#for vsp_fuselage in vsp_fuselages:
		#fuselage_id = vsp_fuselages[vsp_fuselage]
		#fuselage = read_vsp_fuselage(fuselage_id, units_type)
		#vehicle.append_component(fuselage)
	
	#for vsp_wing in vsp_wings:
		#wing_id = vsp_wings[vsp_wing]
		#wing = read_vsp_wing(wing_id, units_type)
		#vehicle.append_component(wing)		
	
	#for vsp_prop in vsp_props:
		#prop_id = vsp_props[vsp_prop]
		#prop = read_vsp_prop(prop_id, units_type)		
		#vehicle.append_component(prop)
	
	return vehicle
예제 #3
0
def write_vsp_mesh(geometry, tag, half_mesh_flag, growth_ratio,
                   growth_limiting_flag):
    """This create an .stl surface mesh based on a vehicle stored in a .vsp3 file.
    
    Assumptions:
    None

    Source:
    N/A

    Inputs:
    geometry.                                 - Also passed to set_sources
      wings.main_wing.chords.mean_aerodynamic [m]
    half_mesh_flag                            <boolean>  determines if a symmetry plane is created
    growth_ratio                              [-]        growth ratio for the mesh
    growth_limiting_flag                      <boolean>  determines if 3D growth limiting is used

    Outputs:
    <tag>.stl                               

    Properties Used:
    N/A
    """

    # Reset OpenVSP to avoid including a previous vehicle
    vsp.ClearVSPModel()

    # Turn on symmetry plane splitting to improve robustness of meshing process
    if half_mesh_flag == True:
        f = fileinput.input(tag + '.vsp3', inplace=1)
        for line in f:
            if 'SymmetrySplitting' in line:
                print line[0:34] + '1' + line[35:-1]
            else:
                print line

    vsp.ReadVSPFile(tag + '.vsp3')

    # Set output file types and what will be meshed
    file_type = vsp.CFD_STL_TYPE + vsp.CFD_KEY_TYPE
    set_int = vsp.SET_ALL

    vsp.SetComputationFileName(vsp.CFD_STL_TYPE, tag + '.stl')
    vsp.SetComputationFileName(vsp.CFD_KEY_TYPE, tag + '.key')

    # Set to create a tagged STL mesh file
    vehicle_cont = vsp.FindContainer('Vehicle', 0)
    STL_multi = vsp.FindParm(vehicle_cont, 'MultiSolid', 'STLSettings')
    vsp.SetParmVal(STL_multi, 1.0)

    vsp.SetCFDMeshVal(vsp.CFD_FAR_FIELD_FLAG, 1)
    if half_mesh_flag == True:
        vsp.SetCFDMeshVal(vsp.CFD_HALF_MESH_FLAG, 1)

    # Figure out the size of the bounding box
    vehicle_id = vsp.FindContainersWithName('Vehicle')[0]
    xlen = vsp.GetParmVal(vsp.FindParm(vehicle_id, "X_Len", "BBox"))
    ylen = vsp.GetParmVal(vsp.FindParm(vehicle_id, "Y_Len", "BBox"))
    zlen = vsp.GetParmVal(vsp.FindParm(vehicle_id, "Z_Len", "BBox"))

    # Max length
    max_len = np.max([xlen, ylen, zlen])
    far_length = 10. * max_len

    vsp.SetCFDMeshVal(vsp.CFD_FAR_SIZE_ABS_FLAG, 1)
    vsp.SetCFDMeshVal(vsp.CFD_FAR_LENGTH, far_length)
    vsp.SetCFDMeshVal(vsp.CFD_FAR_WIDTH, far_length)
    vsp.SetCFDMeshVal(vsp.CFD_FAR_HEIGHT, far_length)
    vsp.SetCFDMeshVal(vsp.CFD_FAR_MAX_EDGE_LEN, max_len)
    vsp.SetCFDMeshVal(vsp.CFD_GROWTH_RATIO, growth_ratio)
    if growth_limiting_flag == True:
        vsp.SetCFDMeshVal(vsp.CFD_LIMIT_GROWTH_FLAG, 1.0)

    # Set the max edge length so we have on average 50 elements per chord length
    MAC = geometry.wings.main_wing.chords.mean_aerodynamic
    min_len = MAC / 50.
    vsp.SetCFDMeshVal(vsp.CFD_MAX_EDGE_LEN, min_len)

    # vsp.AddDefaultSources()
    set_sources(geometry)

    vsp.Update()

    vsp.WriteVSPFile(tag + '_premesh.vsp3')

    print 'Starting mesh for ' + tag + ' (This may take several minutes)'
    ti = time.time()
    vsp.ComputeCFDMesh(set_int, file_type)
    tf = time.time()
    dt = tf - ti
    print 'VSP meshing for ' + tag + ' completed in ' + str(dt) + ' s'
예제 #4
0
def write(vehicle, tag):

    # Reset OpenVSP to avoid including a previous vehicle
    try:
        vsp.ClearVSPModel()
    except NameError:
        print 'VSP import failed'
        return -1

    area_tags = dict()  # for wetted area assignment

    # -------------
    # Wings
    # -------------

    for wing in vehicle.wings:

        wing_x = wing.origin[0]
        wing_y = wing.origin[1]
        wing_z = wing.origin[2]
        if wing.symmetric == True:
            span = wing.spans.projected / 2.  # span of one side
        else:
            span = wing.spans.projected
        root_chord = wing.chords.root
        tip_chord = wing.chords.tip
        sweep = wing.sweeps.quarter_chord / Units.deg
        sweep_loc = 0.25
        root_twist = wing.twists.root / Units.deg
        tip_twist = wing.twists.tip / Units.deg
        root_tc = wing.thickness_to_chord
        tip_tc = wing.thickness_to_chord
        dihedral = wing.dihedral / Units.deg

        # Check to see if segments are defined. Get count
        if len(wing.Segments.keys()) > 0:
            n_segments = len(wing.Segments.keys())
        else:
            n_segments = 0

        # Create the wing
        wing_id = vsp.AddGeom("WING")
        vsp.SetGeomName(wing_id, wing.tag)
        area_tags[wing.tag] = ['wings', wing.tag]

        # Make names for each section and insert them into the wing if necessary
        x_secs = []
        x_sec_curves = []
        # n_segments + 2 will create an extra segment if the root segment is
        # included in the list of segments. This is not used and the tag is
        # removed when the segments are checked for this case.
        for i_segs in xrange(0, n_segments + 2):
            x_secs.append('XSec_' + str(i_segs))
            x_sec_curves.append('XSecCurve_' + str(i_segs))

        # Apply the basic characteristics of the wing to root and tip
        if wing.symmetric == False:
            vsp.SetParmVal(wing_id, 'Sym_Planar_Flag', 'Sym', 0)
        if wing.vertical == True:
            vsp.SetParmVal(wing_id, 'X_Rel_Rotation', 'XForm', 90)

        vsp.SetParmVal(wing_id, 'X_Rel_Location', 'XForm', wing_x)
        vsp.SetParmVal(wing_id, 'Y_Rel_Location', 'XForm', wing_y)
        vsp.SetParmVal(wing_id, 'Z_Rel_Location', 'XForm', wing_z)

        # This ensures that the other VSP parameters are driven properly
        vsp.SetDriverGroup(wing_id, 1, vsp.SPAN_WSECT_DRIVER,
                           vsp.ROOTC_WSECT_DRIVER, vsp.TIPC_WSECT_DRIVER)

        # Root chord
        vsp.SetParmVal(wing_id, 'Root_Chord', x_secs[1], root_chord)

        # Sweep of the first section
        vsp.SetParmVal(wing_id, 'Sweep', x_secs[1], sweep)
        vsp.SetParmVal(wing_id, 'Sweep_Location', x_secs[1], sweep_loc)

        # Twists
        vsp.SetParmVal(wing_id, 'Twist', x_secs[0], tip_twist)  # tip
        vsp.SetParmVal(wing_id, 'Twist', x_secs[0], root_twist)  # root

        # Figure out if there is an airfoil provided

        # Airfoils should be in Lednicer format
        # i.e. :
        #
        #EXAMPLE AIRFOIL
        # 3. 3.
        #
        # 0.0 0.0
        # 0.5 0.1
        # 1.0 0.0
        #
        # 0.0 0.0
        # 0.5 -0.1
        # 1.0 0.0

        # Note this will fail silently if airfoil is not in correct format
        # check geometry output

        if n_segments == 0:
            if len(wing.Airfoil) != 0:
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(xsec1,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(xsec2,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.Update()
        else:  # The wing airfoil is still used for the root segment if the first added segment does not begin there
            # This could be combined with above, but is left here for clarity
            if (len(wing.Airfoil) !=
                    0) and (wing.Segments[0].percent_span_location != 0.):
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(xsec1,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(xsec2,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.Update()
            elif len(wing.Segments[0].Airfoil) != 0:
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(
                    xsec1, wing.Segments[0].Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(
                    xsec2, wing.Segments[0].Airfoil['airfoil'].coordinate_file)
                vsp.Update()

        # Thickness to chords
        vsp.SetParmVal(wing_id, 'ThickChord', 'XSecCurve_0', root_tc)
        vsp.SetParmVal(wing_id, 'ThickChord', 'XSecCurve_1', tip_tc)

        # Dihedral
        vsp.SetParmVal(wing_id, 'Dihedral', x_secs[1], dihedral)

        # Span and tip of the section
        if n_segments > 1:
            local_span = span * wing.Segments[0].percent_span_location
            sec_tip_chord = root_chord * wing.Segments[0].root_chord_percent
            vsp.SetParmVal(wing_id, 'Span', x_secs[1], local_span)
            vsp.SetParmVal(wing_id, 'Tip_Chord', x_secs[1], sec_tip_chord)
        else:
            vsp.SetParmVal(wing_id, 'Span', x_secs[1], span)

        vsp.Update()

        if n_segments > 0:
            if wing.Segments[0].percent_span_location == 0.:
                x_secs[-1] = []  # remove extra section tag (for clarity)
                segment_0_is_root_flag = True
                adjust = 0  # used for indexing
            else:
                segment_0_is_root_flag = False
                adjust = 1
        else:
            adjust = 1

        # Loop for the number of segments left over
        for i_segs in xrange(1, n_segments + 1):

            # Unpack
            dihedral_i = wing.Segments[i_segs -
                                       1].dihedral_outboard / Units.deg
            chord_i = root_chord * wing.Segments[i_segs - 1].root_chord_percent
            twist_i = wing.Segments[i_segs - 1].twist / Units.deg
            sweep_i = wing.Segments[i_segs -
                                    1].sweeps.quarter_chord / Units.deg

            # Calculate the local span
            if i_segs == n_segments:
                span_i = span * (
                    1 - wing.Segments[i_segs - 1].percent_span_location
                ) / np.cos(dihedral_i * Units.deg)
            else:
                span_i = span * (
                    wing.Segments[i_segs].percent_span_location -
                    wing.Segments[i_segs - 1].percent_span_location) / np.cos(
                        dihedral_i * Units.deg)

            # Insert the new wing section with specified airfoil if available
            if len(wing.Segments[i_segs - 1].Airfoil) != 0:
                vsp.InsertXSec(wing_id, i_segs - 1 + adjust,
                               vsp.XS_FILE_AIRFOIL)
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                xsec = vsp.GetXSec(xsecsurf, i_segs + adjust)
                vsp.ReadFileAirfoil(
                    xsec, wing.Segments[i_segs -
                                        1].Airfoil['airfoil'].coordinate_file)
            else:
                vsp.InsertXSec(wing_id, i_segs - 1 + adjust,
                               vsp.XS_FOUR_SERIES)

            # Set the parms
            vsp.SetParmVal(wing_id, 'Span', x_secs[i_segs + adjust], span_i)
            vsp.SetParmVal(wing_id, 'Dihedral', x_secs[i_segs + adjust],
                           dihedral_i)
            vsp.SetParmVal(wing_id, 'Sweep', x_secs[i_segs + adjust], sweep_i)
            vsp.SetParmVal(wing_id, 'Sweep_Location', x_secs[i_segs + adjust],
                           sweep_loc)
            vsp.SetParmVal(wing_id, 'Root_Chord', x_secs[i_segs + adjust],
                           chord_i)
            vsp.SetParmVal(wing_id, 'Twist', x_secs[i_segs + adjust], twist_i)
            vsp.SetParmVal(wing_id, 'ThickChord',
                           x_sec_curves[i_segs + adjust], tip_tc)

            vsp.Update()

        vsp.SetParmVal(wing_id, 'Tip_Chord', x_secs[-1 - (1 - adjust)],
                       tip_chord)
        vsp.SetParmVal(wing_id, 'CapUMaxOption', 'EndCap', 2.)
        vsp.SetParmVal(wing_id, 'CapUMaxStrength', 'EndCap', 1.)

        vsp.Update()  # to fix problems with chords not matching up

        if wing.tag == 'main_wing':
            main_wing_id = wing_id

    ## Skeleton code for props and pylons can be found in previous commits (~Dec 2016) if desired
    ## This was a place to start and may not still be functional

    # -------------
    # Engines
    # -------------

    if vehicle.propulsors.has_key('turbofan'):

        print 'Warning: no meshing sources are currently implemented for the nacelle'

        # Unpack
        turbofan = vehicle.propulsors.turbofan
        n_engines = turbofan.number_of_engines
        length = turbofan.engine_length
        width = turbofan.nacelle_diameter
        origins = turbofan.origin
        bpr = turbofan.bypass_ratio

        for ii in xrange(0, int(n_engines)):

            origin = origins[ii]

            x = origin[0]
            y = origin[1]
            z = origin[2]

            nac_id = vsp.AddGeom("FUSELAGE")
            vsp.SetGeomName(nac_id, 'turbofan')

            # Length and overall diameter
            vsp.SetParmVal(nac_id, "Length", "Design", length)
            vsp.SetParmVal(nac_id, 'Abs_Or_Relitive_flag', 'XForm', vsp.ABS)
            vsp.SetParmVal(nac_id, 'OrderPolicy', 'Design', 1.)
            vsp.SetParmVal(nac_id, 'X_Location', 'XForm', x)
            vsp.SetParmVal(nac_id, 'Y_Location', 'XForm', y)
            vsp.SetParmVal(nac_id, 'Z_Location', 'XForm', z)
            vsp.SetParmVal(nac_id, 'Origin', 'XForm', 0.5)
            vsp.SetParmVal(nac_id, 'Z_Rotation', 'XForm', 180.)

            xsecsurf = vsp.GetXSecSurf(nac_id, 0)
            vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_ELLIPSE)
            vsp.Update()
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_0", width - .2)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_1", width)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_2", width)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_3", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_0", width - .2)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_1", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_2", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_3", width)

            vsp.Update()

    # -------------
    # Fuselage
    # -------------

    if vehicle.fuselages.has_key('fuselage'):
        # Unpack
        fuselage = vehicle.fuselages.fuselage
        width = fuselage.width
        length = fuselage.lengths.total
        hmax = fuselage.heights.maximum
        height1 = fuselage.heights.at_quarter_length
        height2 = fuselage.heights.at_wing_root_quarter_chord
        height3 = fuselage.heights.at_three_quarters_length
        effdia = fuselage.effective_diameter
        n_fine = fuselage.fineness.nose
        t_fine = fuselage.fineness.tail
        w_ac = wing.aerodynamic_center

        w_origin = vehicle.wings.main_wing.origin
        w_c_4 = vehicle.wings.main_wing.chords.root / 4.

        # Figure out the location x location of each section, 3 sections, end of nose, wing origin, and start of tail

        x1 = n_fine * width / length
        x2 = (w_origin[0] + w_c_4) / length
        x3 = 1 - t_fine * width / length

        fuse_id = vsp.AddGeom("FUSELAGE")
        vsp.SetGeomName(fuse_id, fuselage.tag)
        area_tags[fuselage.tag] = ['fuselages', fuselage.tag]

        if fuselage.has_key('OpenVSP_values'):

            vals = fuselage.OpenVSP_values

            # Nose
            vsp.SetParmVal(fuse_id, "TopLAngle", "XSec_0", vals.nose.top.angle)
            vsp.SetParmVal(fuse_id, "TopLStrength", "XSec_0",
                           vals.nose.top.strength)
            vsp.SetParmVal(fuse_id, "RightLAngle", "XSec_0",
                           vals.nose.side.angle)
            vsp.SetParmVal(fuse_id, "RightLStrength", "XSec_0",
                           vals.nose.side.strength)
            vsp.SetParmVal(fuse_id, "TBSym", "XSec_0", vals.nose.TB_Sym)
            vsp.SetParmVal(fuse_id, "ZLocPercent", "XSec_0", vals.nose.z_pos)

            # Tail
            vsp.SetParmVal(fuse_id, "TopLAngle", "XSec_4", vals.tail.top.angle)
            vsp.SetParmVal(fuse_id, "TopLStrength", "XSec_4",
                           vals.tail.top.strength)
            # Below can be enabled if AllSym (below) is removed
            #vsp.SetParmVal(fuse_id,"RightLAngle","XSec_4",vals.tail.side.angle)
            #vsp.SetParmVal(fuse_id,"RightLStrength","XSec_4",vals.tail.side.strength)
            #vsp.SetParmVal(fuse_id,"TBSym","XSec_4",vals.tail.TB_Sym)
            #vsp.SetParmVal(fuse_id,"BottomLAngle","XSec_4",vals.tail.bottom.angle)
            #vsp.SetParmVal(fuse_id,"BottomLStrength","XSec_4",vals.tail.bottom.strength)
            if vals.tail.has_key('z_pos'):
                tail_z_pos = vals.tail.z_pos
            else:
                tail_z_pos = 0.02

            vsp.SetParmVal(fuse_id, "AllSym", "XSec_4", 1)

        vsp.SetParmVal(fuse_id, "Length", "Design", length)
        vsp.SetParmVal(fuse_id, "Diameter", "Design", width)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_1", x1)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_2", x2)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_3", x3)
        vsp.SetParmVal(fuse_id, "ZLocPercent", "XSec_4", tail_z_pos)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_1", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_2", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_3", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_1", height1)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_2", height2)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_3", height3)

    # Write the vehicle to the file

    vsp.WriteVSPFile(tag + ".vsp3")

    return area_tags