예제 #1
0
파일: dummy.py 프로젝트: Erotemic/vtool
def perterb_kpts(kpts, xy_std=None, invV_std=None, ori_std=None, damping=None,
                 seed=None, **kwargs):
    """ Adds normally distributed pertibations to keypoints """
    # TODO: Move to ktool
    # Get standard deviations of pertibations
    if xy_std is None:
        xy_std   = ktool.get_xys(kpts).std(1) + mtool.eps
    if invV_std is None:
        invV_std = ktool.get_invVs(kpts).std(1) + mtool.eps
    if ori_std is None:
        ori_std  = ktool.get_oris(kpts).std() + mtool.eps
    xy_std = np.array(xy_std, dtype=ktool.KPTS_DTYPE)
    invV_std = np.array(invV_std, dtype=ktool.KPTS_DTYPE)
    if damping is not None:
        xy_std /= damping
        invV_std /= damping
        ori_std /= damping
    if seed is not None:
        np.random.seed(seed)
    # Create normally distributed pertibations
    xy_aug   = np.random.normal(0, scale=xy_std, size=(len(kpts), 2)).astype(ktool.KPTS_DTYPE)
    try:
        invV_aug = np.random.normal(0, scale=invV_std, size=(len(kpts), 3)).astype(ktool.KPTS_DTYPE)
    except ValueError as ex:
        ut.printex(ex, key_list=[(type, 'invV_std')])
        raise
    ori_aug = np.random.normal(0, scale=ori_std, size=(len(kpts), 1)).astype(ktool.KPTS_DTYPE)
    # Augment keypoints
    aug = np.hstack((xy_aug, invV_aug, ori_aug))
    kpts_ = kpts + aug
    # Ensure keypoint feasibility
    kpts_ = force_kpts_feasibility(kpts_)
    #print(ut.dict_str({key: type(val) if not isinstance(val, np.ndarray) else val.dtype for key, val in locals().items()}))
    #assert kpts_.dtype == ktool.KPTS_DTYPE, 'bad cast somewhere kpts_.dtype=%r' % (kpts_.dtype)
    return kpts_
예제 #2
0
def kp_info(kp):
    kpts = np.array([kp])
    xy_str = ktool.get_xy_strs(kpts)[0]
    shape_str = ktool.get_shape_strs(kpts)[0]
    ori_ = ktool.get_oris(kpts)[0]
    ori_str = 'ori=%.2f' % ori_
    scale = ktool.get_scales(kpts)[0]
    return xy_str, shape_str, scale, ori_str
예제 #3
0
def kp_info(kp):
    kpts = np.array([kp])
    xy_str    = ktool.get_xy_strs(kpts)[0]
    shape_str = ktool.get_shape_strs(kpts)[0]
    ori_ = ktool.get_oris(kpts)[0]
    ori_str = 'ori=%.2f' % ori_
    scale = ktool.get_scales(kpts)[0]
    return xy_str, shape_str, scale, ori_str
예제 #4
0
def orientation_actors(kpts, H=None):
    """ creates orientation actors w.r.t. the gravity vector """
    import vtool.keypoint as ktool

    try:
        # Get xy diretion of the keypoint orientations
        _xs, _ys = ktool.get_xys(kpts)
        _iv11s, _iv21s, _iv22s = ktool.get_invVs(kpts)
        _oris = ktool.get_oris(kpts)
        # mpl's 0 ori == (-tau / 4) w.r.t GRAVITY_THETA
        abs_oris = _oris + ktool.GRAVITY_THETA
        _sins = np.sin(abs_oris)
        _coss = np.cos(abs_oris)
        # The following is essentially
        # invV.dot(R)
        _dxs = _coss * _iv11s
        _dys = _coss * _iv21s + _sins * _iv22s
        # ut.embed()

        # if H is not None:
        #    # adjust for homogrpahy
        #    import vtool as vt
        #    _xs, _ys = vt.transform_points_with_homography(H, np.vstack((_xs, _ys)))
        #    _dxs, _dys = vt.transform_points_with_homography(H, np.vstack((_dxs, _dys)))

        # head_width_list = np.log(_iv11s * _iv22s) / 5
        head_width_list = np.ones(len(_iv11s)) / 10
        kwargs = {
            'length_includes_head': True,
            'shape': 'full',
            'overhang': 0,
            'head_starts_at_zero': False,
        }
        if H is not None:
            kwargs['transform'] = HomographyTransform(H)

        ori_actors = [
            mpl.patches.FancyArrow(x, y, dx, dy, head_width=hw, **kwargs)
            for (x, y, dx, dy,
                 hw) in zip(_xs, _ys, _dxs, _dys, head_width_list)
        ]
    except ValueError as ex:
        print('\n[mplkp.2] !!! ERROR %s: ' % str(ex))
        print('_oris.shape = %r' % (_oris.shape, ))
        # print('x, y, dx, dy = %r' % ((x, y, dx, dy),))
        print('_dxs = %r' % (_dxs, ))
        print('_dys = %r' % (_dys, ))
        print('_xs = %r' % (_xs, ))
        print('_ys = %r' % (_ys, ))
        raise

    return ori_actors
예제 #5
0
def orientation_actors(kpts, H=None):
    """ creates orientation actors w.r.t. the gravity vector """
    try:
        # Get xy diretion of the keypoint orientations
        _xs, _ys = ktool.get_xys(kpts)
        _iv11s, _iv21s, _iv22s = ktool.get_invVs(kpts)
        _oris = ktool.get_oris(kpts)
        # mpl's 0 ori == (-tau / 4) w.r.t GRAVITY_THETA
        abs_oris = _oris + ktool.GRAVITY_THETA
        _sins = np.sin(abs_oris)
        _coss = np.cos(abs_oris)
        # The following is essentially
        # invV.dot(R)
        _dxs = _coss * _iv11s
        _dys = _coss * _iv21s +  _sins * _iv22s
        #ut.embed()

        #if H is not None:
        #    # adjust for homogrpahy
        #    import vtool as vt
        #    _xs, _ys = vt.transform_points_with_homography(H, np.vstack((_xs, _ys)))
        #    _dxs, _dys = vt.transform_points_with_homography(H, np.vstack((_dxs, _dys)))

        #head_width_list = np.log(_iv11s * _iv22s) / 5
        head_width_list = np.ones(len(_iv11s)) / 10
        kwargs = {
            'length_includes_head': True,
            'shape': 'full',
            'overhang': 0,
            'head_starts_at_zero': False,
        }
        if H is not None:
            kwargs['transform'] = HomographyTransform(H)

        ori_actors = [mpl.patches.FancyArrow(x, y, dx, dy, head_width=hw, **kwargs)
                      for (x, y, dx, dy, hw) in
                      zip(_xs, _ys, _dxs, _dys, head_width_list)]
    except ValueError as ex:
        print('\n[mplkp.2] !!! ERROR %s: ' % str(ex))
        print('_oris.shape = %r' % (_oris.shape,))
        print('x, y, dx, dy = %r' % ((x, y, dx, dy),))
        print('_dxs = %r' % (_dxs,))
        print('_dys = %r' % (_dys,))
        print('_xs = %r' % (_xs,))
        print('_ys = %r' % (_ys,))
        raise

    return ori_actors
예제 #6
0
def test_affine_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    used for refinement as opposed to initial estimation
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    xy2_m = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    refined_inliers, refined_errors = _test_hypothesis_inliers(
        H, invVR1s_m, xy2_m, det2_m, ori2_m, xy_thresh_sqrd, scale_thresh_sqrd,
        ori_thresh)
    refined_tup1 = (refined_inliers, refined_errors, H)
    return refined_tup1
예제 #7
0
def test_affine_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    used for refinement as opposed to initial estimation
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    xy2_m  = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    refined_inliers, refined_errors = _test_hypothesis_inliers(
        H, invVR1s_m, xy2_m, det2_m, ori2_m, xy_thresh_sqrd, scale_thresh_sqrd,
        ori_thresh)
    refined_tup1 = (refined_inliers, refined_errors, H)
    return refined_tup1
예제 #8
0
파일: dummy.py 프로젝트: SU-ECE-17-7/vtool
def perterb_kpts(kpts,
                 xy_std=None,
                 invV_std=None,
                 ori_std=None,
                 damping=None,
                 seed=None,
                 **kwargs):
    """ Adds normally distributed pertibations to keypoints """
    # TODO: Move to ktool
    # Get standard deviations of pertibations
    if xy_std is None:
        xy_std = ktool.get_xys(kpts).std(1) + mtool.eps
    if invV_std is None:
        invV_std = ktool.get_invVs(kpts).std(1) + mtool.eps
    if ori_std is None:
        ori_std = ktool.get_oris(kpts).std() + mtool.eps
    xy_std = np.array(xy_std, dtype=ktool.KPTS_DTYPE)
    invV_std = np.array(invV_std, dtype=ktool.KPTS_DTYPE)
    if damping is not None:
        xy_std /= damping
        invV_std /= damping
        ori_std /= damping
    if seed is not None:
        np.random.seed(seed)
    # Create normally distributed pertibations
    xy_aug = np.random.normal(0, scale=xy_std,
                              size=(len(kpts), 2)).astype(ktool.KPTS_DTYPE)
    try:
        invV_aug = np.random.normal(0, scale=invV_std,
                                    size=(len(kpts),
                                          3)).astype(ktool.KPTS_DTYPE)
    except ValueError as ex:
        ut.printex(ex, key_list=[(type, 'invV_std')])
        raise
    ori_aug = np.random.normal(0, scale=ori_std,
                               size=(len(kpts), 1)).astype(ktool.KPTS_DTYPE)
    # Augment keypoints
    aug = np.hstack((xy_aug, invV_aug, ori_aug))
    kpts_ = kpts + aug
    # Ensure keypoint feasibility
    kpts_ = force_kpts_feasibility(kpts_)
    #print(ut.dict_str({key: type(val) if not isinstance(val, np.ndarray) else val.dtype for key, val in locals().items()}))
    #assert kpts_.dtype == ktool.KPTS_DTYPE, 'bad cast somewhere kpts_.dtype=%r' % (kpts_.dtype)
    return kpts_
예제 #9
0
def filter_neighbors(ibs, qaid2_nns, filt2_weights, qreq):
    qaid2_nnfilt = {}
    # Configs
    filt_cfg = qreq.cfg.filt_cfg
    cant_match_sameimg = not filt_cfg.can_match_sameimg
    cant_match_samename = not filt_cfg.can_match_samename
    K = qreq.cfg.nn_cfg.K
    if NOT_QUIET:
        print('[mf] Step 3) Filter neighbors: ')
    if filt_cfg.gravity_weighting:
        # We dont have an easy way to access keypoints from nearest neighbors yet
        aid_list = np.unique(
            qreq.data_index.dx2_aid)  # FIXME: Highly inefficient
        kpts_list = ibs.get_annot_kpts(aid_list)
        dx2_kpts = np.vstack(kpts_list)
        dx2_oris = ktool.get_oris(dx2_kpts)
        assert len(dx2_oris) == len(qreq.data_index.dx2_data)
    # Filter matches based on config and weights
    mark_, end_ = log_prog('Filter NN: ', len(qaid2_nns))
    for count, qaid in enumerate(six.iterkeys(qaid2_nns)):
        mark_(count)  # progress
        (qfx2_dx, _) = qaid2_nns[qaid]
        qfx2_nndx = qfx2_dx[:, 0:K]
        # Get a numeric score score and valid flag for each feature match
        qfx2_score, qfx2_valid = _apply_filter_scores(qaid, qfx2_nndx,
                                                      filt2_weights, filt_cfg)
        qfx2_aid = qreq.data_index.dx2_aid[qfx2_nndx]
        if VERBOSE:
            print('[mf] * %d assignments are invalid by thresh' %
                  ((True - qfx2_valid).sum()))
        if filt_cfg.gravity_weighting:
            qfx2_nnori = dx2_oris[qfx2_nndx]
            qfx2_kpts = ibs.get_annot_kpts(qaid)  # FIXME: Highly inefficient
            qfx2_oris = ktool.get_oris(qfx2_kpts)
            # Get the orientation distance
            qfx2_oridist = ltool.rowwise_oridist(qfx2_nnori, qfx2_oris)
            # Normalize into a weight (close orientations are 1, far are 0)
            qfx2_gvweight = (np.tau - qfx2_oridist) / np.tau
            # Apply gravity vector weight to the score
            qfx2_score *= qfx2_gvweight
        # Remove Impossible Votes:
        # dont vote for yourself or another chip in the same image
        cant_match_self = not cant_match_sameimg
        if cant_match_self:
            ####DBG
            qfx2_notsamechip = qfx2_aid != qaid
            if VERBOSE:
                nChip_all_invalid = ((True - qfx2_notsamechip)).sum()
                nChip_new_invalid = (qfx2_valid *
                                     (True - qfx2_notsamechip)).sum()
                print('[mf] * %d assignments are invalid by self' %
                      nChip_all_invalid)
                print('[mf] * %d are newly invalided by self' %
                      nChip_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsamechip)
        if cant_match_sameimg:
            qfx2_gid = ibs.get_annot_gids(qfx2_aid)
            qgid = ibs.get_annot_gids(qaid)
            qfx2_notsameimg = qfx2_gid != qgid
            ####DBG
            if VERBOSE:
                nImg_all_invalid = ((True - qfx2_notsameimg)).sum()
                nImg_new_invalid = (qfx2_valid *
                                    (True - qfx2_notsameimg)).sum()
                print('[mf] * %d assignments are invalid by gid' %
                      nImg_all_invalid)
                print('[mf] * %d are newly invalided by gid' %
                      nImg_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsameimg)
        if cant_match_samename:
            qfx2_nid = ibs.get_annot_nids(qfx2_aid)
            qnid = ibs.get_annot_nids(qaid)
            qfx2_notsamename = qfx2_nid != qnid
            ####DBG
            if VERBOSE:
                nName_all_invalid = ((True - qfx2_notsamename)).sum()
                nName_new_invalid = (qfx2_valid *
                                     (True - qfx2_notsamename)).sum()
                print('[mf] * %d assignments are invalid by nid' %
                      nName_all_invalid)
                print('[mf] * %d are newly invalided by nid' %
                      nName_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsamename)
        #printDBG('[mf] * Marking %d assignments as invalid' % ((True - qfx2_valid).sum()))
        qaid2_nnfilt[qaid] = (qfx2_score, qfx2_valid)
    end_()
    return qaid2_nnfilt
예제 #10
0
def test_homog_errors(H,
                      kpts1,
                      kpts2,
                      fm,
                      xy_thresh_sqrd,
                      scale_thresh,
                      ori_thresh,
                      full_homog_checks=True):
    r"""
    Test to see which keypoints the homography correctly maps

    Args:
        H (ndarray[float64_t, ndim=2]):  homography/perspective matrix
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints
        fm (list):  list of feature matches as tuples (qfx, dfx)
        xy_thresh_sqrd (float):
        scale_thresh (float):
        ori_thresh (float):  angle in radians
        full_homog_checks (bool):

    Returns:
        tuple: homog_tup1

    CommandLine:
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001 --no-full-homog-checks
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --no-full-homog-checks
        # --------------
        # Shows (sorta) how inliers are computed
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --xy-thresh=.001

    Example0:
        >>> # DISABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import plottool as pt
        >>> kpts1, kpts2, fm, aff_inliers, rchip1, rchip2, xy_thresh_sqrd = testdata_matching_affine_inliers()
        >>> H = estimate_refined_transform(kpts1, kpts2, fm, aff_inliers)
        >>> scale_thresh, ori_thresh = 2.0, 1.57
        >>> full_homog_checks = not ut.get_argflag('--no-full-homog-checks')
        >>> homog_tup1 = test_homog_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh, ori_thresh, full_homog_checks)
        >>> homog_tup = (homog_tup1[0], homog_tup1[2])
        >>> ut.quit_if_noshow()
        >>> pt.draw_sv.show_sv(rchip1, rchip2, kpts1, kpts2, fm, homog_tup=homog_tup)
        >>> ut.show_if_requested()

    Example1:
        >>> # DISABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import plottool as pt
        >>> kpts1, kpts2, fm_, aff_inliers, rchip1, rchip2, xy_thresh_sqrd = testdata_matching_affine_inliers()
        >>> H = estimate_refined_transform(kpts1, kpts2, fm_, aff_inliers)
        >>> scale_thresh, ori_thresh = 2.0, 1.57
        >>> full_homog_checks = not ut.get_argflag('--no-full-homog-checks')
        >>> # ----------------
        >>> # Take subset of feature matches
        >>> fm = fm_
        >>> scale_err, xy_err, ori_err = \
        ...     ut.exec_func_src(test_homog_errors, globals(), locals(),
        ...     'scale_err, xy_err, ori_err'.split(', '))
        >>> # we only care about checking out scale and orientation here. ignore bad xy points
        >>> xy_inliers_flag = np.less(xy_err, xy_thresh_sqrd)
        >>> scale_err[~xy_inliers_flag] = 0
        >>> # filter
        >>> fm = fm_[np.array(scale_err).argsort()[::-1][:10]]
        >>> fm = fm_[np.array(scale_err).argsort()[::-1][:10]]
        >>> # Exec sourcecode
        >>> kpts1_m, kpts2_m, off_xy1_m, off_xy1_mt, dxy1_m, dxy1_mt, xy2_m, xy1_m, xy1_mt, scale_err, xy_err, ori_err = \
        ...     ut.exec_func_src(test_homog_errors, globals(), locals(),
        ...     'kpts1_m, kpts2_m, off_xy1_m, off_xy1_mt, dxy1_m, dxy1_mt, xy2_m, xy1_m, xy1_mt, scale_err, xy_err, ori_err'.split(', '))
        >>> #---------------
        >>> ut.quit_if_noshow()
        >>> pt.figure(fnum=1, pnum=(1, 2, 1), title='orig points and offset point')
        >>> segments_list1 = np.array(list(zip(xy1_m.T.tolist(), off_xy1_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list1, color=pt.LIGHT_BLUE)
        >>> pt.dark_background()
        >>> #---------------
        >>> pt.figure(fnum=1, pnum=(1, 2, 2), title='transformed points and matching points')
        >>> #---------------
        >>> # first have to make corresponding offset points
        >>> # Use reference point for scale and orientation tests
        >>> oris2_m   = ktool.get_oris(kpts2_m)
        >>> scales2_m = ktool.get_scales(kpts2_m)
        >>> dxy2_m    = np.vstack((np.sin(oris2_m), -np.cos(oris2_m)))
        >>> scaled_dxy2_m = dxy2_m * scales2_m[None, :]
        >>> off_xy2_m = xy2_m + scaled_dxy2_m
        >>> # Draw transformed semgents
        >>> segments_list2 = np.array(list(zip(xy2_m.T.tolist(), off_xy2_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list2, color=pt.GREEN)
        >>> # Draw corresponding matches semgents
        >>> segments_list3 = np.array(list(zip(xy1_mt.T.tolist(), off_xy1_mt.T.tolist())))
        >>> pt.draw_line_segments(segments_list3, color=pt.RED)
        >>> # Draw matches between correspondences
        >>> segments_list4 = np.array(list(zip(xy1_mt.T.tolist(), xy2_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list4, color=pt.ORANGE)
        >>> pt.dark_background()
        >>> #---------------
        >>> #vt.get _xy_axis_extents(kpts1_m)
        >>> #pt.draw_sv.show_sv(rchip1, rchip2, kpts1, kpts2, fm, homog_tup=homog_tup)
        >>> ut.show_if_requested()
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    # Transform all xy1 matches to xy2 space
    xy1_m = ktool.get_xys(kpts1_m)
    #with ut.embed_on_exception_context:
    xy1_mt = ltool.transform_points_with_homography(H, xy1_m)
    #xy1_mt  = ktool.transform_kpts_xys(H, kpts1_m)
    xy2_m = ktool.get_xys(kpts2_m)
    # --- Find (Squared) Homography Distance Error ---
    # You cannot test for scale or orientation easily here because
    # you no longer have an ellipse? (maybe, probably have a conic) when using a
    # projective transformation
    xy_err = dtool.L2_sqrd(xy1_mt.T, xy2_m.T)
    # Estimate final inliers
    #ut.embed()
    if full_homog_checks:
        # TODO: may need to use more than one reference point
        # Use reference point for scale and orientation tests
        oris1_m = ktool.get_oris(kpts1_m)
        scales1_m = ktool.get_scales(kpts1_m)
        # Get point offsets with unit length
        dxy1_m = np.vstack((np.sin(oris1_m), -np.cos(oris1_m)))
        scaled_dxy1_m = dxy1_m * scales1_m[None, :]
        off_xy1_m = xy1_m + scaled_dxy1_m
        # transform reference point
        off_xy1_mt = ltool.transform_points_with_homography(H, off_xy1_m)
        scaled_dxy1_mt = xy1_mt - off_xy1_mt
        scales1_mt = npl.norm(scaled_dxy1_mt, axis=0)
        #with warnings.catch_warnings():
        #    warnings.simplefilter("ignore")
        dxy1_mt = scaled_dxy1_mt / scales1_mt
        # adjust for gravity vector being 0
        oris1_mt = np.arctan2(dxy1_mt[1], dxy1_mt[0]) - ktool.GRAVITY_THETA
        _det1_mt = scales1_mt**2
        det2_m = ktool.get_sqrd_scales(kpts2_m)
        ori2_m = ktool.get_oris(kpts2_m)
        #xy_err    = dtool.L2_sqrd(xy2_m.T, _xy1_mt.T)
        scale_err = dtool.det_distance(_det1_mt, det2_m)
        ori_err = dtool.ori_distance(oris1_mt, ori2_m)
        ###
        xy_inliers_flag = np.less(xy_err, xy_thresh_sqrd)
        scale_inliers_flag = np.less(scale_err, scale_thresh)
        ori_inliers_flag = np.less(ori_err, ori_thresh)
        hypo_inliers_flag = xy_inliers_flag  # Try to re-use memory
        np.logical_and(hypo_inliers_flag,
                       ori_inliers_flag,
                       out=hypo_inliers_flag)
        np.logical_and(hypo_inliers_flag,
                       scale_inliers_flag,
                       out=hypo_inliers_flag)
        # Seems slower due to memory
        #hypo_inliers_flag = np.logical_and.reduce(
        #    [xy_inliers_flag, ori_inliers_flag, scale_inliers_flag])
        # this is also slower
        #hypo_inliers_flag = np.logical_and.reduce((xy_inliers_flag,
        #ori_inliers_flag, scale_inliers_flag), out=xy_inliers_flag)
        refined_inliers = np.where(hypo_inliers_flag)[0].astype(INDEX_DTYPE)
        refined_errors = (xy_err, ori_err, scale_err)
    else:
        refined_inliers = np.where(
            xy_err < xy_thresh_sqrd)[0].astype(INDEX_DTYPE)
        refined_errors = (xy_err, None, None)
    homog_tup1 = (refined_inliers, refined_errors, H)
    return homog_tup1
예제 #11
0
def get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    Estimates inliers deterministically using elliptical shapes

    Compute all transforms from kpts1 to kpts2 (enumerate all hypothesis)
    We transform from chip1 -> chip2
    The determinants are squared keypoint scales

    FROM PERDOCH 2009::
        H = inv(Aj).dot(Rj.T).dot(Ri).dot(Ai)
        H = inv(Aj).dot(Ai)
        The input invVs = perdoch.invA's

    CommandLine:
        python -m vtool.spatial_verification --test-get_affine_inliers

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import vtool.tests.dummy as dummy
        >>> import vtool.keypoint as ktool
        >>> kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        >>> fm = dummy.make_dummy_fm(len(kpts1)).astype(np.int32)
        >>> fs = np.ones(len(fm), dtype=np.float64)
        >>> xy_thresh_sqrd = ktool.KPTS_DTYPE(.009) ** 2
        >>> scale_thresh_sqrd = ktool.KPTS_DTYPE(2)
        >>> ori_thresh = ktool.KPTS_DTYPE(TAU / 4)
        >>> output = get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd,
        >>>                             scale_thresh_sqrd, ori_thresh)
        >>> result = ut.hashstr(output)
        >>> print(result)
        89kz8nh6p+66t!+u

    Ignore::
        from vtool.spatial_verification import *  # NOQA
        import vtool.tests.dummy as dummy
        import vtool.keypoint as ktool
        kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        a = kpts1[fm.T[0]]
        b = kpts1.take(fm.T[0])

        align = fm.dtype.itemsize * fm.shape[1]
        align2 = [fm.dtype.itemsize, fm.dtype.itemsize]
        viewtype1 = np.dtype(np.void, align)
        viewtype2 = np.dtype(np.int32, align2)
        c = np.ascontiguousarray(fm).view(viewtype1)
        fm_view = np.ascontiguousarray(fm).view(viewtype1)
        qfx = fm.view(np.dtype(np.int32 np.int32.itemsize))
        dfx = fm.view(np.dtype(np.int32, np.int32.itemsize))
        d = np.ascontiguousarray(c).view(viewtype2)

        fm.view(np.dtype(np.void, align))
        np.ascontiguousarray(fm).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    """
    #http://ipython-books.github.io/featured-01/
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)

    # Get keypoints to project in matrix form
    #invVR2s_m = ktool.get_invV_mats(kpts2_m, with_trans=True, with_ori=True)
    #invVR1s_m = ktool.get_invV_mats(kpts1_m, with_trans=True, with_ori=True)
    invVR2s_m = ktool.get_invVR_mats3x3(kpts2_m)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    RV1s_m = ktool.invert_invV_mats(invVR1s_m)  # 539 us
    # BUILD ALL HYPOTHESIS TRANSFORMS: The transform from kp1 to kp2 is:
    Aff_mats = matrix_multiply(invVR2s_m, RV1s_m)
    # Get components to test projects against
    xy2_m = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    # SLOWER EQUIVALENT
    # RV1s_m    = ktool.get_V_mats(kpts1_m, with_trans=True, with_ori=True)  # 5.2 ms
    # xy2_m  = ktool.get_invVR_mats_xys(invVR2s_m)
    # ori2_m = ktool.get_invVR_mats_oris(invVR2s_m)
    # assert np.all(ktool.get_oris(kpts2_m) == ktool.get_invVR_mats_oris(invVR2s_m))
    # assert np.all(ktool.get_xys(kpts2_m) == ktool.get_invVR_mats_xys(invVR2s_m))

    # The previous versions of this function were all roughly comparable.
    # The for loop one was the slowest. I'm deciding to go with the one
    # where there is no internal function definition. It was moderately faster,
    # and it gives us access to profile that function
    inliers_and_errors_list = [
        _test_hypothesis_inliers(Aff, invVR1s_m, xy2_m, det2_m, ori2_m,
                                 xy_thresh_sqrd, scale_thresh_sqrd, ori_thresh)
        for Aff in Aff_mats
    ]
    aff_inliers_list = [tup[0] for tup in inliers_and_errors_list]
    aff_errors_list = [tup[1] for tup in inliers_and_errors_list]
    return aff_inliers_list, aff_errors_list, Aff_mats
예제 #12
0
def test_homog_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh,
                      ori_thresh, full_homog_checks=True):
    r"""
    Test to see which keypoints the homography correctly maps

    Args:
        H (ndarray[float64_t, ndim=2]):  homography/perspective matrix
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints
        fm (list):  list of feature matches as tuples (qfx, dfx)
        xy_thresh_sqrd (float):
        scale_thresh (float):
        ori_thresh (float):  angle in radians
        full_homog_checks (bool):

    Returns:
        tuple: homog_tup1

    CommandLine:
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001 --no-full-homog-checks
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --no-full-homog-checks
        # --------------
        # Shows (sorta) how inliers are computed
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance --no-affine-invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:1 --show --rotation_invariance --xy-thresh=.001
        python -m vtool.spatial_verification --test-test_homog_errors:0 --show --rotation_invariance --xy-thresh=.001

    Example0:
        >>> # DISABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import plottool as pt
        >>> kpts1, kpts2, fm, aff_inliers, rchip1, rchip2, xy_thresh_sqrd = testdata_matching_affine_inliers()
        >>> H = estimate_refined_transform(kpts1, kpts2, fm, aff_inliers)
        >>> scale_thresh, ori_thresh = 2.0, 1.57
        >>> full_homog_checks = not ut.get_argflag('--no-full-homog-checks')
        >>> homog_tup1 = test_homog_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh, ori_thresh, full_homog_checks)
        >>> homog_tup = (homog_tup1[0], homog_tup1[2])
        >>> ut.quit_if_noshow()
        >>> pt.draw_sv.show_sv(rchip1, rchip2, kpts1, kpts2, fm, homog_tup=homog_tup)
        >>> ut.show_if_requested()

    Example1:
        >>> # DISABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import plottool as pt
        >>> kpts1, kpts2, fm_, aff_inliers, rchip1, rchip2, xy_thresh_sqrd = testdata_matching_affine_inliers()
        >>> H = estimate_refined_transform(kpts1, kpts2, fm_, aff_inliers)
        >>> scale_thresh, ori_thresh = 2.0, 1.57
        >>> full_homog_checks = not ut.get_argflag('--no-full-homog-checks')
        >>> # ----------------
        >>> # Take subset of feature matches
        >>> fm = fm_
        >>> scale_err, xy_err, ori_err = \
        ...     ut.exec_func_src(test_homog_errors, globals(), locals(),
        ...     'scale_err, xy_err, ori_err'.split(', '))
        >>> # we only care about checking out scale and orientation here. ignore bad xy points
        >>> xy_inliers_flag = np.less(xy_err, xy_thresh_sqrd)
        >>> scale_err[~xy_inliers_flag] = 0
        >>> # filter
        >>> fm = fm_[np.array(scale_err).argsort()[::-1][:10]]
        >>> fm = fm_[np.array(scale_err).argsort()[::-1][:10]]
        >>> # Exec sourcecode
        >>> kpts1_m, kpts2_m, off_xy1_m, off_xy1_mt, dxy1_m, dxy1_mt, xy2_m, xy1_m, xy1_mt, scale_err, xy_err, ori_err = \
        ...     ut.exec_func_src(test_homog_errors, globals(), locals(),
        ...     'kpts1_m, kpts2_m, off_xy1_m, off_xy1_mt, dxy1_m, dxy1_mt, xy2_m, xy1_m, xy1_mt, scale_err, xy_err, ori_err'.split(', '))
        >>> #---------------
        >>> ut.quit_if_noshow()
        >>> pt.figure(fnum=1, pnum=(1, 2, 1), title='orig points and offset point')
        >>> segments_list1 = np.array(list(zip(xy1_m.T.tolist(), off_xy1_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list1, color=pt.LIGHT_BLUE)
        >>> pt.dark_background()
        >>> #---------------
        >>> pt.figure(fnum=1, pnum=(1, 2, 2), title='transformed points and matching points')
        >>> #---------------
        >>> # first have to make corresponding offset points
        >>> # Use reference point for scale and orientation tests
        >>> oris2_m   = ktool.get_oris(kpts2_m)
        >>> scales2_m = ktool.get_scales(kpts2_m)
        >>> dxy2_m    = np.vstack((np.sin(oris2_m), -np.cos(oris2_m)))
        >>> scaled_dxy2_m = dxy2_m * scales2_m[None, :]
        >>> off_xy2_m = xy2_m + scaled_dxy2_m
        >>> # Draw transformed semgents
        >>> segments_list2 = np.array(list(zip(xy2_m.T.tolist(), off_xy2_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list2, color=pt.GREEN)
        >>> # Draw corresponding matches semgents
        >>> segments_list3 = np.array(list(zip(xy1_mt.T.tolist(), off_xy1_mt.T.tolist())))
        >>> pt.draw_line_segments(segments_list3, color=pt.RED)
        >>> # Draw matches between correspondences
        >>> segments_list4 = np.array(list(zip(xy1_mt.T.tolist(), xy2_m.T.tolist())))
        >>> pt.draw_line_segments(segments_list4, color=pt.ORANGE)
        >>> pt.dark_background()
        >>> #---------------
        >>> #vt.get _xy_axis_extents(kpts1_m)
        >>> #pt.draw_sv.show_sv(rchip1, rchip2, kpts1, kpts2, fm, homog_tup=homog_tup)
        >>> ut.show_if_requested()
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    # Transform all xy1 matches to xy2 space
    xy1_m   = ktool.get_xys(kpts1_m)
    #with ut.embed_on_exception_context:
    xy1_mt  = ltool.transform_points_with_homography(H, xy1_m)
    #xy1_mt  = ktool.transform_kpts_xys(H, kpts1_m)
    xy2_m   = ktool.get_xys(kpts2_m)
    # --- Find (Squared) Homography Distance Error ---
    # You cannot test for scale or orientation easily here because
    # you no longer have an ellipse? (maybe, probably have a conic) when using a
    # projective transformation
    xy_err = dtool.L2_sqrd(xy1_mt.T, xy2_m.T)
    # Estimate final inliers
    #ut.embed()
    if full_homog_checks:
        # TODO: may need to use more than one reference point
        # Use reference point for scale and orientation tests
        oris1_m   = ktool.get_oris(kpts1_m)
        scales1_m = ktool.get_scales(kpts1_m)
        # Get point offsets with unit length
        dxy1_m    = np.vstack((np.sin(oris1_m), -np.cos(oris1_m)))
        scaled_dxy1_m = dxy1_m * scales1_m[None, :]
        off_xy1_m = xy1_m + scaled_dxy1_m
        # transform reference point
        off_xy1_mt = ltool.transform_points_with_homography(H, off_xy1_m)
        scaled_dxy1_mt = xy1_mt - off_xy1_mt
        scales1_mt = npl.norm(scaled_dxy1_mt, axis=0)
        #with warnings.catch_warnings():
        #    warnings.simplefilter("ignore")
        dxy1_mt = scaled_dxy1_mt / scales1_mt
        # adjust for gravity vector being 0
        oris1_mt = np.arctan2(dxy1_mt[1], dxy1_mt[0]) - ktool.GRAVITY_THETA
        _det1_mt = scales1_mt ** 2
        det2_m = ktool.get_sqrd_scales(kpts2_m)
        ori2_m = ktool.get_oris(kpts2_m)
        #xy_err    = dtool.L2_sqrd(xy2_m.T, _xy1_mt.T)
        scale_err = dtool.det_distance(_det1_mt, det2_m)
        ori_err   = dtool.ori_distance(oris1_mt, ori2_m)
        ###
        xy_inliers_flag = np.less(xy_err, xy_thresh_sqrd)
        scale_inliers_flag = np.less(scale_err, scale_thresh)
        ori_inliers_flag   = np.less(ori_err, ori_thresh)
        hypo_inliers_flag = xy_inliers_flag  # Try to re-use memory
        np.logical_and(hypo_inliers_flag, ori_inliers_flag, out=hypo_inliers_flag)
        np.logical_and(hypo_inliers_flag, scale_inliers_flag, out=hypo_inliers_flag)
        # Seems slower due to memory
        #hypo_inliers_flag = np.logical_and.reduce(
        #    [xy_inliers_flag, ori_inliers_flag, scale_inliers_flag])
        # this is also slower
        #hypo_inliers_flag = np.logical_and.reduce((xy_inliers_flag,
        #ori_inliers_flag, scale_inliers_flag), out=xy_inliers_flag)
        refined_inliers = np.where(hypo_inliers_flag)[0].astype(INDEX_DTYPE)
        refined_errors = (xy_err, ori_err, scale_err)
    else:
        refined_inliers = np.where(xy_err < xy_thresh_sqrd)[0].astype(INDEX_DTYPE)
        refined_errors = (xy_err, None, None)
    homog_tup1 = (refined_inliers, refined_errors, H)
    return homog_tup1
예제 #13
0
def get_affine_inliers(kpts1, kpts2, fm, fs,
                        xy_thresh_sqrd,
                        scale_thresh_sqrd,
                        ori_thresh):
    """
    Estimates inliers deterministically using elliptical shapes

    Compute all transforms from kpts1 to kpts2 (enumerate all hypothesis)
    We transform from chip1 -> chip2
    The determinants are squared keypoint scales

    FROM PERDOCH 2009::
        H = inv(Aj).dot(Rj.T).dot(Ri).dot(Ai)
        H = inv(Aj).dot(Ai)
        The input invVs = perdoch.invA's

    CommandLine:
        python -m vtool.spatial_verification --test-get_affine_inliers

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import vtool.tests.dummy as dummy
        >>> import vtool.keypoint as ktool
        >>> kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        >>> fm = dummy.make_dummy_fm(len(kpts1)).astype(np.int32)
        >>> fs = np.ones(len(fm), dtype=np.float64)
        >>> xy_thresh_sqrd = ktool.KPTS_DTYPE(.009) ** 2
        >>> scale_thresh_sqrd = ktool.KPTS_DTYPE(2)
        >>> ori_thresh = ktool.KPTS_DTYPE(TAU / 4)
        >>> output = get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd,
        >>>                             scale_thresh_sqrd, ori_thresh)
        >>> result = ut.hashstr(output)
        >>> print(result)
        89kz8nh6p+66t!+u

    Ignore::
        from vtool.spatial_verification import *  # NOQA
        import vtool.tests.dummy as dummy
        import vtool.keypoint as ktool
        kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        a = kpts1[fm.T[0]]
        b = kpts1.take(fm.T[0])

        align = fm.dtype.itemsize * fm.shape[1]
        align2 = [fm.dtype.itemsize, fm.dtype.itemsize]
        viewtype1 = np.dtype(np.void, align)
        viewtype2 = np.dtype(np.int32, align2)
        c = np.ascontiguousarray(fm).view(viewtype1)
        fm_view = np.ascontiguousarray(fm).view(viewtype1)
        qfx = fm.view(np.dtype(np.int32 np.int32.itemsize))
        dfx = fm.view(np.dtype(np.int32, np.int32.itemsize))
        d = np.ascontiguousarray(c).view(viewtype2)

        fm.view(np.dtype(np.void, align))
        np.ascontiguousarray(fm).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    """
    #http://ipython-books.github.io/featured-01/
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)

    # Get keypoints to project in matrix form
    #invVR2s_m = ktool.get_invV_mats(kpts2_m, with_trans=True, with_ori=True)
    #invVR1s_m = ktool.get_invV_mats(kpts1_m, with_trans=True, with_ori=True)
    invVR2s_m = ktool.get_invVR_mats3x3(kpts2_m)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    RV1s_m    = ktool.invert_invV_mats(invVR1s_m)  # 539 us
    # BUILD ALL HYPOTHESIS TRANSFORMS: The transform from kp1 to kp2 is:
    Aff_mats = matrix_multiply(invVR2s_m, RV1s_m)
    # Get components to test projects against
    xy2_m  = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    # SLOWER EQUIVALENT
    # RV1s_m    = ktool.get_V_mats(kpts1_m, with_trans=True, with_ori=True)  # 5.2 ms
    # xy2_m  = ktool.get_invVR_mats_xys(invVR2s_m)
    # ori2_m = ktool.get_invVR_mats_oris(invVR2s_m)
    # assert np.all(ktool.get_oris(kpts2_m) == ktool.get_invVR_mats_oris(invVR2s_m))
    # assert np.all(ktool.get_xys(kpts2_m) == ktool.get_invVR_mats_xys(invVR2s_m))

    # The previous versions of this function were all roughly comparable.
    # The for loop one was the slowest. I'm deciding to go with the one
    # where there is no internal function definition. It was moderately faster,
    # and it gives us access to profile that function
    inliers_and_errors_list = [_test_hypothesis_inliers(Aff, invVR1s_m, xy2_m,
                                                        det2_m, ori2_m,
                                                        xy_thresh_sqrd,
                                                        scale_thresh_sqrd,
                                                        ori_thresh)
                               for Aff in Aff_mats]
    aff_inliers_list = [tup[0] for tup in inliers_and_errors_list]
    aff_errors_list  = [tup[1] for tup in inliers_and_errors_list]
    return aff_inliers_list, aff_errors_list, Aff_mats
예제 #14
0
def filter_neighbors(ibs, qaid2_nns, filt2_weights, qreq):
    qaid2_nnfilt = {}
    # Configs
    filt_cfg = qreq.cfg.filt_cfg
    cant_match_sameimg  = not filt_cfg.can_match_sameimg
    cant_match_samename = not filt_cfg.can_match_samename
    K = qreq.cfg.nn_cfg.K
    if NOT_QUIET:
        print('[mf] Step 3) Filter neighbors: ')
    if filt_cfg.gravity_weighting:
        # We dont have an easy way to access keypoints from nearest neighbors yet
        aid_list = np.unique(qreq.data_index.dx2_aid)  # FIXME: Highly inefficient
        kpts_list = ibs.get_annot_kpts(aid_list)
        dx2_kpts = np.vstack(kpts_list)
        dx2_oris = ktool.get_oris(dx2_kpts)
        assert len(dx2_oris) == len(qreq.data_index.dx2_data)
    # Filter matches based on config and weights
    mark_, end_ = log_prog('Filter NN: ', len(qaid2_nns))
    for count, qaid in enumerate(six.iterkeys(qaid2_nns)):
        mark_(count)  # progress
        (qfx2_dx, _) = qaid2_nns[qaid]
        qfx2_nndx = qfx2_dx[:, 0:K]
        # Get a numeric score score and valid flag for each feature match
        qfx2_score, qfx2_valid = _apply_filter_scores(qaid, qfx2_nndx, filt2_weights, filt_cfg)
        qfx2_aid = qreq.data_index.dx2_aid[qfx2_nndx]
        if VERBOSE:
            print('[mf] * %d assignments are invalid by thresh' %
                  ((True - qfx2_valid).sum()))
        if filt_cfg.gravity_weighting:
            qfx2_nnori = dx2_oris[qfx2_nndx]
            qfx2_kpts  = ibs.get_annot_kpts(qaid)  # FIXME: Highly inefficient
            qfx2_oris  = ktool.get_oris(qfx2_kpts)
            # Get the orientation distance
            qfx2_oridist = ltool.rowwise_oridist(qfx2_nnori, qfx2_oris)
            # Normalize into a weight (close orientations are 1, far are 0)
            qfx2_gvweight = (np.tau - qfx2_oridist) / np.tau
            # Apply gravity vector weight to the score
            qfx2_score *= qfx2_gvweight
        # Remove Impossible Votes:
        # dont vote for yourself or another chip in the same image
        cant_match_self = not cant_match_sameimg
        if cant_match_self:
            ####DBG
            qfx2_notsamechip = qfx2_aid != qaid
            if VERBOSE:
                nChip_all_invalid = ((True - qfx2_notsamechip)).sum()
                nChip_new_invalid = (qfx2_valid * (True - qfx2_notsamechip)).sum()
                print('[mf] * %d assignments are invalid by self' % nChip_all_invalid)
                print('[mf] * %d are newly invalided by self' % nChip_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsamechip)
        if cant_match_sameimg:
            qfx2_gid = ibs.get_annot_gids(qfx2_aid)
            qgid     = ibs.get_annot_gids(qaid)
            qfx2_notsameimg = qfx2_gid != qgid
            ####DBG
            if VERBOSE:
                nImg_all_invalid = ((True - qfx2_notsameimg)).sum()
                nImg_new_invalid = (qfx2_valid * (True - qfx2_notsameimg)).sum()
                print('[mf] * %d assignments are invalid by gid' % nImg_all_invalid)
                print('[mf] * %d are newly invalided by gid' % nImg_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsameimg)
        if cant_match_samename:
            qfx2_nid = ibs.get_annot_nids(qfx2_aid)
            qnid = ibs.get_annot_nids(qaid)
            qfx2_notsamename = qfx2_nid != qnid
            ####DBG
            if VERBOSE:
                nName_all_invalid = ((True - qfx2_notsamename)).sum()
                nName_new_invalid = (qfx2_valid * (True - qfx2_notsamename)).sum()
                print('[mf] * %d assignments are invalid by nid' % nName_all_invalid)
                print('[mf] * %d are newly invalided by nid' % nName_new_invalid)
            ####
            qfx2_valid = np.logical_and(qfx2_valid, qfx2_notsamename)
        #printDBG('[mf] * Marking %d assignments as invalid' % ((True - qfx2_valid).sum()))
        qaid2_nnfilt[qaid] = (qfx2_score, qfx2_valid)
    end_()
    return qaid2_nnfilt