예제 #1
0
def to_address(expr, args, kwargs, context):
    lll_node = [
        "with", "_in_arg", args[0],
        ["seq", address_clamp("_in_arg"), "_in_arg"]
    ]
    return LLLnode.from_list(lll_node,
                             typ=BaseType("address"),
                             pos=getpos(expr))
예제 #2
0
def to_bool(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == "Bytes":
        if in_arg.typ.maxlen > 32:
            raise TypeMismatch(
                f"Cannot convert bytes array of max length {in_arg.typ.maxlen} to bool",
                expr,
            )
        else:
            num = byte_array_to_num(in_arg, expr, "uint256")
            return LLLnode.from_list(["iszero", ["iszero", num]],
                                     typ=BaseType("bool"),
                                     pos=getpos(expr))

    else:
        return LLLnode.from_list(["iszero", ["iszero", in_arg]],
                                 typ=BaseType("bool"),
                                 pos=getpos(expr))
예제 #3
0
def keccak256_helper(expr, args, kwargs, context):
    sub = args[0]
    # Can hash literals
    if isinstance(sub, bytes):
        return LLLnode.from_list(
            bytes_to_int(keccak256(sub)), typ=BaseType("bytes32"), pos=getpos(expr)
        )
    # Can hash bytes32 objects
    if is_base_type(sub.typ, "bytes32"):
        return LLLnode.from_list(
            [
                "seq",
                ["mstore", MemoryPositions.FREE_VAR_SPACE, sub],
                ["sha3", MemoryPositions.FREE_VAR_SPACE, 32],
            ],
            typ=BaseType("bytes32"),
            pos=getpos(expr),
        )
    # Copy the data to an in-memory array
    if sub.location == "memory":
        # If we are hashing a value in memory, no need to copy it, just hash in-place
        return LLLnode.from_list(
            ["with", "_sub", sub, ["sha3", ["add", "_sub", 32], ["mload", "_sub"]]],
            typ=BaseType("bytes32"),
            pos=getpos(expr),
        )
    elif sub.location == "storage":
        lengetter = LLLnode.from_list(["sload", "_sub"], typ=BaseType("int128"))
    else:
        # This should never happen, but just left here for future compiler-writers.
        raise Exception(f"Unsupported location: {sub.location}")  # pragma: no test
    placeholder = context.new_internal_variable(sub.typ)
    placeholder_node = LLLnode.from_list(placeholder, typ=sub.typ, location="memory")
    copier = make_byte_array_copier(
        placeholder_node, LLLnode.from_list("_sub", typ=sub.typ, location=sub.location),
    )
    return LLLnode.from_list(
        ["with", "_sub", sub, ["seq", copier, ["sha3", ["add", placeholder, 32], lengetter]]],
        typ=BaseType("bytes32"),
        pos=getpos(expr),
    )
예제 #4
0
def to_uint256(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == "num_literal":
        if isinstance(in_arg, int):
            if not SizeLimits.in_bounds("uint256", in_arg):
                raise InvalidLiteral(f"Number out of range: {in_arg}")
            return LLLnode.from_list(in_arg,
                                     typ=BaseType("uint256", ),
                                     pos=getpos(expr))
        elif isinstance(in_arg, Decimal):
            if not SizeLimits.in_bounds("uint256", math.trunc(in_arg)):
                raise InvalidLiteral(
                    f"Number out of range: {math.trunc(in_arg)}")
            return LLLnode.from_list(math.trunc(in_arg),
                                     typ=BaseType("uint256"),
                                     pos=getpos(expr))
        else:
            raise InvalidLiteral(f"Unknown numeric literal type: {in_arg}")

    elif isinstance(in_arg, LLLnode) and input_type in ("int128", "int256"):
        return LLLnode.from_list(["clampge", in_arg, 0],
                                 typ=BaseType("uint256"),
                                 pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type == "decimal":
        return LLLnode.from_list(
            ["div", ["clampge", in_arg, 0], DECIMAL_DIVISOR],
            typ=BaseType("uint256"),
            pos=getpos(expr),
        )

    elif isinstance(in_arg, LLLnode) and input_type == "bool":
        return LLLnode.from_list(in_arg,
                                 typ=BaseType("uint256"),
                                 pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type in ("bytes32", "address"):
        return LLLnode(value=in_arg.value,
                       args=in_arg.args,
                       typ=BaseType("uint256"),
                       pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type == "Bytes":
        if in_arg.typ.maxlen > 32:
            raise InvalidLiteral(
                f"Cannot convert bytes array of max length {in_arg.typ.maxlen} to uint256",
                expr,
            )
        return byte_array_to_num(in_arg, expr, "uint256")

    else:
        raise InvalidLiteral(f"Invalid input for uint256: {in_arg}", expr)
예제 #5
0
def _to_bytelike(expr, args, kwargs, context, bytetype):
    if bytetype == "String":
        ReturnType = StringType
    elif bytetype == "Bytes":
        ReturnType = ByteArrayType
    else:
        raise TypeMismatch(f"Invalid {bytetype} supplied")

    in_arg = args[0]
    if in_arg.typ.maxlen > args[1].slice.value.n:
        raise TypeMismatch(
            f"Cannot convert as input {bytetype} are larger than max length",
            expr,
        )

    return LLLnode(
        value=in_arg.value,
        args=in_arg.args,
        typ=ReturnType(in_arg.typ.maxlen),
        pos=getpos(expr),
        location=in_arg.location,
    )
예제 #6
0
def to_bytes32(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _len = get_type(in_arg)

    if input_type == "Bytes":
        if _len > 32:
            raise TypeMismatch(
                f"Unable to convert bytes[{_len}] to bytes32, max length is too "
                "large.")

        if in_arg.location == "memory":
            return LLLnode.from_list(["mload", ["add", in_arg, 32]],
                                     typ=BaseType("bytes32"))
        elif in_arg.location == "storage":
            return LLLnode.from_list(["sload", ["add", in_arg, 1]],
                                     typ=BaseType("bytes32"))

    else:
        return LLLnode(value=in_arg.value,
                       args=in_arg.args,
                       typ=BaseType("bytes32"),
                       pos=getpos(expr))
예제 #7
0
def make_call(stmt_expr, context):
    # ** Internal Call **
    # Steps:
    # (x) push current local variables
    # (x) push arguments
    # (x) push jumpdest (callback ptr)
    # (x) jump to label
    # (x) pop return values
    # (x) pop local variables

    pop_local_vars = []
    push_local_vars = []
    pop_return_values = []
    push_args = []
    method_name = stmt_expr.func.attr

    # TODO check this out
    from vyper.old_codegen.expr import parse_sequence

    pre_init, expr_args = parse_sequence(stmt_expr, stmt_expr.args, context)
    sig = FunctionSignature.lookup_sig(
        context.sigs,
        method_name,
        expr_args,
        stmt_expr,
        context,
    )

    if context.is_constant() and sig.mutability not in ("view", "pure"):
        raise StateAccessViolation(
            f"May not call state modifying function "
            f"'{method_name}' within {context.pp_constancy()}.",
            getpos(stmt_expr),
        )

    if not sig.internal:
        raise StructureException("Cannot call external functions via 'self'",
                                 stmt_expr)

    # Push local variables.
    var_slots = [(v.pos, v.size) for name, v in context.vars.items()
                 if v.location == "memory"]
    if var_slots:
        var_slots.sort(key=lambda x: x[0])

        if len(var_slots) > 10:
            # if memory is large enough, push and pop it via iteration
            mem_from, mem_to = var_slots[0][
                0], var_slots[-1][0] + var_slots[-1][1] * 32
            i_placeholder = context.new_internal_variable(BaseType("uint256"))
            local_save_ident = f"_{stmt_expr.lineno}_{stmt_expr.col_offset}"
            push_loop_label = "save_locals_start" + local_save_ident
            pop_loop_label = "restore_locals_start" + local_save_ident
            push_local_vars = [
                ["mstore", i_placeholder, mem_from],
                ["label", push_loop_label],
                ["mload", ["mload", i_placeholder]],
                [
                    "mstore", i_placeholder,
                    ["add", ["mload", i_placeholder], 32]
                ],
                [
                    "if", ["lt", ["mload", i_placeholder], mem_to],
                    ["goto", push_loop_label]
                ],
            ]
            pop_local_vars = [
                ["mstore", i_placeholder, mem_to - 32],
                ["label", pop_loop_label],
                ["mstore", ["mload", i_placeholder], "pass"],
                [
                    "mstore", i_placeholder,
                    ["sub", ["mload", i_placeholder], 32]
                ],
                [
                    "if", ["ge", ["mload", i_placeholder], mem_from],
                    ["goto", pop_loop_label]
                ],
            ]
        else:
            # for smaller memory, hardcode the mload/mstore locations
            push_mem_slots = []
            for pos, size in var_slots:
                push_mem_slots.extend([pos + i * 32 for i in range(size)])

            push_local_vars = [["mload", pos] for pos in push_mem_slots]
            pop_local_vars = [["mstore", pos, "pass"]
                              for pos in push_mem_slots[::-1]]

    # Push Arguments
    if expr_args:
        inargs, inargsize, arg_pos = pack_arguments(sig,
                                                    expr_args,
                                                    context,
                                                    stmt_expr,
                                                    is_external_call=False)
        push_args += [
            inargs
        ]  # copy arguments first, to not mess up the push/pop sequencing.

        static_arg_size = 32 * sum(
            [get_static_size_of_type(arg.typ) for arg in expr_args])
        static_pos = int(arg_pos + static_arg_size)
        needs_dyn_section = any(
            [has_dynamic_data(arg.typ) for arg in expr_args])

        if needs_dyn_section:
            ident = f"push_args_{sig.method_id}_{stmt_expr.lineno}_{stmt_expr.col_offset}"
            start_label = ident + "_start"
            end_label = ident + "_end"
            i_placeholder = context.new_internal_variable(BaseType("uint256"))

            # Calculate copy start position.
            # Given | static | dynamic | section in memory,
            # copy backwards so the values are in order on the stack.
            # We calculate i, the end of the whole encoded part
            # (i.e. the starting index for copy)
            # by taking ceil32(len<arg>) + offset<arg> + arg_pos
            # for the last dynamic argument and arg_pos is the start
            # the whole argument section.
            idx = 0
            for arg in expr_args:
                if isinstance(arg.typ, ByteArrayLike):
                    last_idx = idx
                idx += get_static_size_of_type(arg.typ)
            push_args += [[
                "with",
                "offset",
                ["mload", arg_pos + last_idx * 32],
                [
                    "with",
                    "len_pos",
                    ["add", arg_pos, "offset"],
                    [
                        "with",
                        "len_value",
                        ["mload", "len_pos"],
                        [
                            "mstore", i_placeholder,
                            ["add", "len_pos", ["ceil32", "len_value"]]
                        ],
                    ],
                ],
            ]]
            # loop from end of dynamic section to start of dynamic section,
            # pushing each element onto the stack.
            push_args += [
                ["label", start_label],
                [
                    "if", ["lt", ["mload", i_placeholder], static_pos],
                    ["goto", end_label]
                ],
                ["mload", ["mload", i_placeholder]],
                [
                    "mstore", i_placeholder,
                    ["sub", ["mload", i_placeholder], 32]
                ],  # decrease i
                ["goto", start_label],
                ["label", end_label],
            ]

        # push static section
        push_args += [["mload", pos]
                      for pos in reversed(range(arg_pos, static_pos, 32))]
    elif sig.args:
        raise StructureException(
            f"Wrong number of args for: {sig.name} (0 args given, expected {len(sig.args)})",
            stmt_expr,
        )

    # Jump to function label.
    jump_to_func = [
        ["add", ["pc"], 6],  # set callback pointer.
        ["goto", f"priv_{sig.method_id}"],
        ["jumpdest"],
    ]

    # Pop return values.
    returner = [0]
    if sig.output_type:
        output_placeholder, returner, output_size = _call_make_placeholder(
            stmt_expr, context, sig)
        if output_size > 0:
            dynamic_offsets = []
            if isinstance(sig.output_type, (BaseType, ListType)):
                pop_return_values = [[
                    "mstore", ["add", output_placeholder, pos], "pass"
                ] for pos in range(0, output_size, 32)]
            elif isinstance(sig.output_type, ByteArrayLike):
                dynamic_offsets = [(0, sig.output_type)]
                pop_return_values = [
                    ["pop", "pass"],
                ]
            elif isinstance(sig.output_type, TupleLike):
                static_offset = 0
                pop_return_values = []
                for name, typ in sig.output_type.tuple_items():
                    if isinstance(typ, ByteArrayLike):
                        pop_return_values.append([
                            "mstore",
                            ["add", output_placeholder, static_offset], "pass"
                        ])
                        dynamic_offsets.append(([
                            "mload",
                            ["add", output_placeholder, static_offset]
                        ], name))
                        static_offset += 32
                    else:
                        member_output_size = get_size_of_type(typ) * 32
                        pop_return_values.extend([[
                            "mstore", ["add", output_placeholder, pos], "pass"
                        ] for pos in range(static_offset, static_offset +
                                           member_output_size, 32)])
                        static_offset += member_output_size

            # append dynamic unpacker.
            dyn_idx = 0
            for in_memory_offset, _out_type in dynamic_offsets:
                ident = f"{stmt_expr.lineno}_{stmt_expr.col_offset}_arg_{dyn_idx}"
                dyn_idx += 1
                start_label = "dyn_unpack_start_" + ident
                end_label = "dyn_unpack_end_" + ident
                i_placeholder = context.new_internal_variable(
                    typ=BaseType("uint256"))
                begin_pos = ["add", output_placeholder, in_memory_offset]
                # loop until length.
                o = LLLnode.from_list(
                    [
                        "seq_unchecked",
                        ["mstore", begin_pos, "pass"],  # get len
                        ["mstore", i_placeholder, 0],
                        ["label", start_label],
                        [  # break
                            "if",
                            [
                                "ge", ["mload", i_placeholder],
                                ["ceil32", ["mload", begin_pos]]
                            ],
                            ["goto", end_label],
                        ],
                        [  # pop into correct memory slot.
                            "mstore",
                            [
                                "add", ["add", begin_pos, 32],
                                ["mload", i_placeholder]
                            ],
                            "pass",
                        ],
                        # increment i
                        [
                            "mstore", i_placeholder,
                            ["add", 32, ["mload", i_placeholder]]
                        ],
                        ["goto", start_label],
                        ["label", end_label],
                    ],
                    typ=None,
                    annotation="dynamic unpacker",
                    pos=getpos(stmt_expr),
                )
                pop_return_values.append(o)

    call_body = list(
        itertools.chain(
            ["seq_unchecked"],
            pre_init,
            push_local_vars,
            push_args,
            jump_to_func,
            pop_return_values,
            pop_local_vars,
            [returner],
        ))
    # If we have no return, we need to pop off
    pop_returner_call_body = ["pop", call_body
                              ] if sig.output_type is None else call_body

    o = LLLnode.from_list(
        pop_returner_call_body,
        typ=sig.output_type,
        location="memory",
        pos=getpos(stmt_expr),
        annotation=f"Internal Call: {method_name}",
        add_gas_estimate=sig.gas,
    )
    o.gas += sig.gas
    return o
예제 #8
0
def gen_tuple_return(stmt, context, sub):
    abi_typ = abi_type_of(context.return_type)
    # according to the ABI, return types are ALWAYS tuples even if
    # only one element is being returned.
    # https://solidity.readthedocs.io/en/latest/abi-spec.html#function-selector-and-argument-encoding
    # "and the return values v_1, ..., v_k of f are encoded as
    #
    #    enc((v_1, ..., v_k))
    #    i.e. the values are combined into a tuple and encoded.
    # "
    # therefore, wrap it in a tuple if it's not already a tuple.
    # (big difference between returning `(bytes,)` and `bytes`.
    abi_typ = ensure_tuple(abi_typ)
    abi_bytes_needed = abi_typ.static_size() + abi_typ.dynamic_size_bound()
    dst = context.memory_allocator.expand_memory(abi_bytes_needed)
    return_buffer = LLLnode(dst,
                            location="memory",
                            annotation="return_buffer",
                            typ=context.return_type)

    check_assign(return_buffer, sub, pos=getpos(stmt))

    if sub.value == "multi":

        if isinstance(context.return_type,
                      TupleType) and not abi_typ.dynamic_size_bound():
            # for tuples where every value is of the same type and a fixed length,
            # we can simplify the encoding by using make_setter, since
            # our memory encoding happens to be identical to the ABI
            # encoding.
            new_sub = LLLnode.from_list(
                context.new_internal_variable(context.return_type),
                typ=context.return_type,
                location="memory",
            )
            setter = make_setter(new_sub, sub, "memory", pos=getpos(stmt))
            return LLLnode.from_list(
                [
                    "seq",
                    setter,
                    make_return_stmt(
                        stmt,
                        context,
                        new_sub,
                        get_size_of_type(context.return_type) * 32,
                    ),
                ],
                typ=None,
                pos=getpos(stmt),
            )

        # in case of multi we can't create a variable to store location of the return expression
        # as multi can have data from multiple location like store, calldata etc
        encode_out = abi_encode(return_buffer,
                                sub,
                                pos=getpos(stmt),
                                returns=True)
        load_return_len = ["mload", MemoryPositions.FREE_VAR_SPACE]
        os = [
            "seq",
            ["mstore", MemoryPositions.FREE_VAR_SPACE, encode_out],
            make_return_stmt(stmt, context, return_buffer, load_return_len),
        ]
        return LLLnode.from_list(os, typ=None, pos=getpos(stmt), valency=0)

    # for tuple return types where a function is called inside the tuple, we
    # process the calls prior to encoding the return data
    if sub.value == "seq_unchecked" and sub.args[-1].value == "multi":
        encode_out = abi_encode(return_buffer,
                                sub.args[-1],
                                pos=getpos(stmt),
                                returns=True)
        load_return_len = ["mload", MemoryPositions.FREE_VAR_SPACE]
        os = (["seq"] + sub.args[:-1] + [
            ["mstore", MemoryPositions.FREE_VAR_SPACE, encode_out],
            make_return_stmt(stmt, context, return_buffer, load_return_len),
        ])
        return LLLnode.from_list(os, typ=None, pos=getpos(stmt), valency=0)

    # for all othe cases we are creating a stack variable named sub_loc to store the  location
    # of the return expression. This is done so that the return expression does not get evaluated
    # abi-encode uses a function named o_list which evaluate the expression multiple times
    sub_loc = LLLnode("sub_loc", typ=sub.typ, location=sub.location)
    encode_out = abi_encode(return_buffer,
                            sub_loc,
                            pos=getpos(stmt),
                            returns=True)
    load_return_len = ["mload", MemoryPositions.FREE_VAR_SPACE]
    os = [
        "with",
        "sub_loc",
        sub,
        [
            "seq",
            ["mstore", MemoryPositions.FREE_VAR_SPACE, encode_out],
            make_return_stmt(stmt, context, return_buffer, load_return_len),
        ],
    ]
    return LLLnode.from_list(os, typ=None, pos=getpos(stmt), valency=0)
예제 #9
0
def to_int128(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == "num_literal":
        if isinstance(in_arg, int):
            if not SizeLimits.in_bounds("int128", in_arg):
                raise InvalidLiteral(f"Number out of range: {in_arg}")
            return LLLnode.from_list(in_arg,
                                     typ=BaseType("int128"),
                                     pos=getpos(expr))
        elif isinstance(in_arg, Decimal):
            if not SizeLimits.in_bounds("int128", math.trunc(in_arg)):
                raise InvalidLiteral(
                    f"Number out of range: {math.trunc(in_arg)}")
            return LLLnode.from_list(math.trunc(in_arg),
                                     typ=BaseType("int128"),
                                     pos=getpos(expr))
        else:
            raise InvalidLiteral(f"Unknown numeric literal type: {in_arg}")

    elif input_type in ("bytes32", "int256"):
        if in_arg.typ.is_literal:
            if not SizeLimits.in_bounds("int128", in_arg.value):
                raise InvalidLiteral(f"Number out of range: {in_arg.value}",
                                     expr)
            else:
                return LLLnode.from_list(in_arg,
                                         typ=BaseType("int128"),
                                         pos=getpos(expr))
        else:
            return LLLnode.from_list(
                int128_clamp(in_arg),
                typ=BaseType("int128"),
                pos=getpos(expr),
            )

    elif input_type == "address":
        return LLLnode.from_list(
            ["signextend", 15, ["and", in_arg, (SizeLimits.ADDRSIZE - 1)]],
            typ=BaseType("int128"),
            pos=getpos(expr),
        )

    elif input_type in ("String", "Bytes"):
        if in_arg.typ.maxlen > 32:
            raise TypeMismatch(
                f"Cannot convert bytes array of max length {in_arg.typ.maxlen} to int128",
                expr,
            )
        return byte_array_to_num(in_arg, expr, "int128")

    elif input_type == "uint256":
        if in_arg.typ.is_literal:
            if not SizeLimits.in_bounds("int128", in_arg.value):
                raise InvalidLiteral(f"Number out of range: {in_arg.value}",
                                     expr)
            else:
                return LLLnode.from_list(in_arg,
                                         typ=BaseType("int128"),
                                         pos=getpos(expr))

        else:
            return LLLnode.from_list(
                ["uclample", in_arg, ["mload", MemoryPositions.MAX_INT128]],
                typ=BaseType("int128"),
                pos=getpos(expr),
            )

    elif input_type == "decimal":
        return LLLnode.from_list(
            int128_clamp(["sdiv", in_arg, DECIMAL_DIVISOR]),
            typ=BaseType("int128"),
            pos=getpos(expr),
        )

    elif input_type == "bool":
        return LLLnode.from_list(in_arg,
                                 typ=BaseType("int128"),
                                 pos=getpos(expr))

    else:
        raise InvalidLiteral(f"Invalid input for int128: {in_arg}", expr)
예제 #10
0
    def from_definition(
        cls,
        code,
        sigs=None,
        custom_structs=None,
        interface_def=False,
        constant_override=False,
        is_from_json=False,
    ):
        if not custom_structs:
            custom_structs = {}

        name = code.name
        mem_pos = 0

        # Determine the arguments, expects something of the form def foo(arg1:
        # int128, arg2: int128 ...
        args = []
        for arg in code.args.args:
            # Each arg needs a type specified.
            typ = arg.annotation
            parsed_type = parse_type(
                typ,
                None,
                sigs,
                custom_structs=custom_structs,
            )
            args.append(
                VariableRecord(
                    arg.arg,
                    mem_pos,
                    parsed_type,
                    False,
                    defined_at=getpos(arg),
                ))

            if isinstance(parsed_type, ByteArrayLike):
                mem_pos += 32
            else:
                mem_pos += get_size_of_type(parsed_type) * 32

        mutability = "nonpayable"  # Assume nonpayable by default
        nonreentrant_key = ""
        is_internal = False

        # Update function properties from decorators
        # NOTE: Can't import enums here because of circular import
        for dec in code.decorator_list:
            if isinstance(dec, vy_ast.Name) and dec.id in ("payable", "view",
                                                           "pure"):
                mutability = dec.id
            elif isinstance(dec, vy_ast.Name) and dec.id == "internal":
                is_internal = True
            elif isinstance(dec, vy_ast.Name) and dec.id == "external":
                is_internal = False
            elif isinstance(dec,
                            vy_ast.Call) and dec.func.id == "nonreentrant":
                nonreentrant_key = dec.args[0].s

        if constant_override:
            # In case this override is abused, match previous behavior
            if mutability == "payable":
                raise StructureException(
                    f"Function {name} cannot be both constant and payable.")
            mutability = "view"

        # Determine the return type and whether or not it's constant. Expects something
        # of the form:
        # def foo(): ...
        # def foo() -> int128: ...
        # If there is no return type, ie. it's of the form def foo(): ...
        # and NOT def foo() -> type: ..., then it's null
        output_type = None
        if code.returns:
            output_type = parse_type(
                code.returns,
                None,
                sigs,
                custom_structs=custom_structs,
            )
            # Output type must be canonicalizable
            assert isinstance(output_type,
                              TupleType) or canonicalize_type(output_type)
        # Get the canonical function signature
        sig = cls.get_full_sig(name, code.args.args, sigs, custom_structs)

        # Take the first 4 bytes of the hash of the sig to get the method ID
        method_id = fourbytes_to_int(keccak256(bytes(sig, "utf-8"))[:4])
        return cls(
            name,
            args,
            output_type,
            mutability,
            is_internal,
            nonreentrant_key,
            sig,
            method_id,
            code,
            is_from_json,
        )
예제 #11
0
def to_int256(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == "num_literal":
        if isinstance(in_arg, int):
            if not SizeLimits.in_bounds("int256", in_arg):
                raise InvalidLiteral(f"Number out of range: {in_arg}")
            return LLLnode.from_list(in_arg,
                                     typ=BaseType("int256", ),
                                     pos=getpos(expr))
        elif isinstance(in_arg, Decimal):
            if not SizeLimits.in_bounds("int256", math.trunc(in_arg)):
                raise InvalidLiteral(
                    f"Number out of range: {math.trunc(in_arg)}")
            return LLLnode.from_list(math.trunc(in_arg),
                                     typ=BaseType("int256"),
                                     pos=getpos(expr))
        else:
            raise InvalidLiteral(f"Unknown numeric literal type: {in_arg}")

    elif isinstance(in_arg, LLLnode) and input_type == "int128":
        return LLLnode.from_list(in_arg,
                                 typ=BaseType("int256"),
                                 pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type == "uint256":
        if version_check(begin="constantinople"):
            upper_bound = ["shl", 255, 1]
        else:
            upper_bound = -(2**255)
        return LLLnode.from_list(["uclamplt", in_arg, upper_bound],
                                 typ=BaseType("int256"),
                                 pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type == "decimal":
        return LLLnode.from_list(
            ["sdiv", in_arg, DECIMAL_DIVISOR],
            typ=BaseType("int256"),
            pos=getpos(expr),
        )

    elif isinstance(in_arg, LLLnode) and input_type == "bool":
        return LLLnode.from_list(in_arg,
                                 typ=BaseType("int256"),
                                 pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type in ("bytes32", "address"):
        return LLLnode(value=in_arg.value,
                       args=in_arg.args,
                       typ=BaseType("int256"),
                       pos=getpos(expr))

    elif isinstance(in_arg, LLLnode) and input_type in ("Bytes", "String"):
        if in_arg.typ.maxlen > 32:
            raise TypeMismatch(
                f"Cannot convert bytes array of max length {in_arg.typ.maxlen} to int256",
                expr,
            )
        return byte_array_to_num(in_arg, expr, "int256")

    else:
        raise InvalidLiteral(f"Invalid input for int256: {in_arg}", expr)
예제 #12
0
def external_call(node,
                  context,
                  interface_name,
                  contract_address,
                  pos,
                  value=None,
                  gas=None):
    from vyper.old_codegen.expr import Expr

    if value is None:
        value = 0
    if gas is None:
        gas = "gas"

    method_name = node.func.attr
    sig = context.sigs[interface_name][method_name]
    inargs, inargsize, _ = pack_arguments(
        sig,
        [Expr(arg, context).lll_node for arg in node.args],
        context,
        node.func,
        is_external_call=True,
    )
    output_placeholder, output_size, returner = get_external_call_output(
        sig, context)
    sub = ["seq"]
    if not output_size:
        # if we do not expect return data, check that a contract exists at the target address
        # we can omit this when we _do_ expect return data because we later check `returndatasize`
        sub.append(["assert", ["extcodesize", contract_address]])
    if context.is_constant() and sig.mutability not in ("view", "pure"):
        # TODO this can probably go
        raise StateAccessViolation(
            f"May not call state modifying function '{method_name}' "
            f"within {context.pp_constancy()}.",
            node,
        )

    if context.is_constant() or sig.mutability in ("view", "pure"):
        sub.append([
            "assert",
            [
                "staticcall",
                gas,
                contract_address,
                inargs,
                inargsize,
                output_placeholder,
                output_size,
            ],
        ])
    else:
        sub.append([
            "assert",
            [
                "call",
                gas,
                contract_address,
                value,
                inargs,
                inargsize,
                output_placeholder,
                output_size,
            ],
        ])
    if output_size:
        # when return data is expected, revert when the length of `returndatasize` is insufficient
        output_type = sig.output_type
        if not has_dynamic_data(output_type):
            static_output_size = get_static_size_of_type(output_type) * 32
            sub.append(
                ["assert", ["gt", "returndatasize", static_output_size - 1]])
        else:
            if isinstance(output_type, ByteArrayLike):
                types_list = (output_type, )
            elif isinstance(output_type, TupleLike):
                types_list = output_type.tuple_members()
            else:
                raise

            dynamic_checks = []
            static_offset = output_placeholder
            static_output_size = 0
            for typ in types_list:
                # ensure length of bytes does not exceed max allowable length for type
                if isinstance(typ, ByteArrayLike):
                    static_output_size += 32
                    # do not perform this check on calls to a JSON interface - we don't know
                    # for certain how long the expected data is
                    if not sig.is_from_json:
                        dynamic_checks.append([
                            "assert",
                            [
                                "lt",
                                [
                                    "mload",
                                    [
                                        "add", ["mload", static_offset],
                                        output_placeholder
                                    ],
                                ],
                                typ.maxlen + 1,
                            ],
                        ])
                static_offset += get_static_size_of_type(typ) * 32
                static_output_size += get_static_size_of_type(typ) * 32

            sub.append(
                ["assert", ["gt", "returndatasize", static_output_size - 1]])
            sub.extend(dynamic_checks)

    sub.extend(returner)

    return LLLnode.from_list(sub,
                             typ=sig.output_type,
                             location="memory",
                             pos=getpos(node))
예제 #13
0
def make_external_call(stmt_expr, context):
    # circular import!
    from vyper.old_codegen.expr import Expr

    value, gas = get_external_interface_keywords(stmt_expr, context)

    if isinstance(stmt_expr.func, vy_ast.Attribute) and isinstance(
            stmt_expr.func.value, vy_ast.Call):
        contract_name = stmt_expr.func.value.func.id
        contract_address = Expr.parse_value_expr(stmt_expr.func.value.args[0],
                                                 context)

        return external_call(
            stmt_expr,
            context,
            contract_name,
            contract_address,
            pos=getpos(stmt_expr),
            value=value,
            gas=gas,
        )

    elif (isinstance(stmt_expr.func.value, vy_ast.Attribute)
          and stmt_expr.func.value.attr in context.sigs):  # noqa: E501
        contract_name = stmt_expr.func.value.attr
        type_ = stmt_expr.func.value._metadata["type"]
        var = context.globals[stmt_expr.func.value.attr]
        contract_address = unwrap_location(
            LLLnode.from_list(
                type_.position.position,
                typ=var.typ,
                location="storage",
                pos=getpos(stmt_expr),
                annotation="self." + stmt_expr.func.value.attr,
            ))

        return external_call(
            stmt_expr,
            context,
            contract_name,
            contract_address,
            pos=getpos(stmt_expr),
            value=value,
            gas=gas,
        )

    elif (isinstance(stmt_expr.func.value, vy_ast.Attribute)
          and stmt_expr.func.value.attr in context.globals
          and hasattr(context.globals[stmt_expr.func.value.attr].typ, "name")):

        contract_name = context.globals[stmt_expr.func.value.attr].typ.name
        type_ = stmt_expr.func.value._metadata["type"]
        var = context.globals[stmt_expr.func.value.attr]
        contract_address = unwrap_location(
            LLLnode.from_list(
                type_.position.position,
                typ=var.typ,
                location="storage",
                pos=getpos(stmt_expr),
                annotation="self." + stmt_expr.func.value.attr,
            ))

        return external_call(
            stmt_expr,
            context,
            contract_name,
            contract_address,
            pos=getpos(stmt_expr),
            value=value,
            gas=gas,
        )

    else:
        raise StructureException("Unsupported operator.", stmt_expr)
예제 #14
0
def parse_external_function(
    code: vy_ast.FunctionDef,
    sig: FunctionSignature,
    context: Context,
    check_nonpayable: bool,
) -> LLLnode:
    """
    Parse a external function (FuncDef), and produce full function body.

    :param sig: the FuntionSignature
    :param code: ast of function
    :param check_nonpayable: if True, include a check that `msg.value == 0`
                             at the beginning of the function
    :return: full sig compare & function body
    """

    func_type = code._metadata["type"]

    # Get nonreentrant lock
    nonreentrant_pre, nonreentrant_post = get_nonreentrant_lock(func_type)

    clampers = []

    # Generate copiers
    copier: List[Any] = ["pass"]
    if not len(sig.base_args):
        copier = ["pass"]
    elif sig.name == "__init__":
        copier = [
            "codecopy", MemoryPositions.RESERVED_MEMORY, "~codelen",
            sig.base_copy_size
        ]
        context.memory_allocator.expand_memory(sig.max_copy_size)
    clampers.append(copier)

    if check_nonpayable and sig.mutability != "payable":
        # if the contract contains payable functions, but this is not one of them
        # add an assertion that the value of the call is zero
        clampers.append(["assert", ["iszero", "callvalue"]])

    # Fill variable positions
    default_args_start_pos = len(sig.base_args)
    for i, arg in enumerate(sig.args):
        if i < len(sig.base_args):
            clampers.append(
                make_arg_clamper(
                    arg.pos,
                    context.memory_allocator.get_next_memory_position(),
                    arg.typ,
                    sig.name == "__init__",
                ))
        if isinstance(arg.typ, ByteArrayLike):
            mem_pos = context.memory_allocator.expand_memory(
                32 * get_size_of_type(arg.typ))
            context.vars[arg.name] = VariableRecord(arg.name, mem_pos, arg.typ,
                                                    False)
        else:
            if sig.name == "__init__":
                context.vars[arg.name] = VariableRecord(
                    arg.name,
                    MemoryPositions.RESERVED_MEMORY + arg.pos,
                    arg.typ,
                    False,
                )
            elif i >= default_args_start_pos:  # default args need to be allocated in memory.
                type_size = get_size_of_type(arg.typ) * 32
                default_arg_pos = context.memory_allocator.expand_memory(
                    type_size)
                context.vars[arg.name] = VariableRecord(
                    name=arg.name,
                    pos=default_arg_pos,
                    typ=arg.typ,
                    mutable=False,
                )
            else:
                context.vars[arg.name] = VariableRecord(name=arg.name,
                                                        pos=4 + arg.pos,
                                                        typ=arg.typ,
                                                        mutable=False,
                                                        location="calldata")

    # Create "clampers" (input well-formedness checkers)
    # Return function body
    if sig.name == "__init__":
        o = LLLnode.from_list(
            ["seq"] + clampers +
            [parse_body(code.body, context)],  # type: ignore
            pos=getpos(code),
        )
    # Is default function.
    elif sig.is_default_func():
        o = LLLnode.from_list(
            ["seq"] + clampers + [parse_body(code.body, context)] +
            [["stop"]],  # type: ignore
            pos=getpos(code),
        )
    # Is a normal function.
    else:
        # Function with default parameters.
        if sig.total_default_args > 0:
            function_routine = f"{sig.name}_{sig.method_id}"
            default_sigs = sig_utils.generate_default_arg_sigs(
                code, context.sigs, context.global_ctx)
            sig_chain: List[Any] = ["seq"]

            for default_sig in default_sigs:
                sig_compare, _ = get_sig_statements(default_sig, getpos(code))

                # Populate unset default variables
                set_defaults = []
                for arg_name in get_default_names_to_set(sig, default_sig):
                    value = Expr(sig.default_values[arg_name],
                                 context).lll_node
                    var = context.vars[arg_name]
                    left = LLLnode.from_list(
                        var.pos,
                        typ=var.typ,
                        location="memory",
                        pos=getpos(code),
                        mutable=var.mutable,
                    )
                    set_defaults.append(
                        make_setter(left, value, "memory", pos=getpos(code)))

                current_sig_arg_names = {x.name for x in default_sig.args}
                base_arg_names = {arg.name for arg in sig.base_args}
                copier_arg_count = len(default_sig.args) - len(sig.base_args)
                copier_arg_names = list(current_sig_arg_names - base_arg_names)

                # Order copier_arg_names, this is very important.
                copier_arg_names = [
                    x.name for x in default_sig.args
                    if x.name in copier_arg_names
                ]

                # Variables to be populated from calldata/stack.
                default_copiers: List[Any] = []
                if copier_arg_count > 0:
                    # Get map of variables in calldata, with thier offsets
                    offset = 4
                    calldata_offset_map = {}
                    for arg in default_sig.args:
                        calldata_offset_map[arg.name] = offset
                        offset += (32 if isinstance(arg.typ, ByteArrayLike)
                                   else get_size_of_type(arg.typ) * 32)

                    # Copy default parameters from calldata.
                    for arg_name in copier_arg_names:
                        var = context.vars[arg_name]
                        calldata_offset = calldata_offset_map[arg_name]

                        # Add clampers.
                        default_copiers.append(
                            make_arg_clamper(
                                calldata_offset - 4,
                                var.pos,
                                var.typ,
                            ))
                        # Add copying code.
                        _offset: Union[int, List[Any]] = calldata_offset
                        if isinstance(var.typ, ByteArrayLike):
                            _offset = [
                                "add", 4, ["calldataload", calldata_offset]
                            ]
                        default_copiers.append(
                            get_external_arg_copier(
                                memory_dest=var.pos,
                                total_size=var.size * 32,
                                offset=_offset,
                            ))

                    default_copiers.append(0)  # for over arching seq, POP

                sig_chain.append([
                    "if",
                    sig_compare,
                    [
                        "seq",
                        ["seq"] + set_defaults if set_defaults else ["pass"],
                        ["seq_unchecked"] +
                        default_copiers if default_copiers else ["pass"],
                        ["goto", function_routine],
                    ],
                ])

            # Function with default parameters.
            function_jump_label = f"{sig.name}_{sig.method_id}_skip"
            o = LLLnode.from_list(
                [
                    "seq",
                    sig_chain,
                    [
                        "seq",
                        ["goto", function_jump_label],
                        ["label", function_routine],
                        ["seq"] + nonreentrant_pre + clampers +
                        [parse_body(c, context)
                         for c in code.body] + nonreentrant_post + [["stop"]],
                        ["label", function_jump_label],
                    ],
                ],
                typ=None,
                pos=getpos(code),
            )

        else:
            # Function without default parameters.
            sig_compare, _ = get_sig_statements(sig, getpos(code))
            o = LLLnode.from_list(
                [
                    "if",
                    sig_compare,
                    ["seq"] + nonreentrant_pre + clampers +
                    [parse_body(c, context)
                     for c in code.body] + nonreentrant_post + [["stop"]],
                ],
                typ=None,
                pos=getpos(code),
            )
    return o
예제 #15
0
def parse_internal_function(code: vy_ast.FunctionDef, sig: FunctionSignature,
                            context: Context) -> LLLnode:
    """
    Parse a internal function (FuncDef), and produce full function body.

    :param sig: the FuntionSignature
    :param code: ast of function
    :return: full sig compare & function body
    """

    func_type = code._metadata["type"]

    # Get nonreentrant lock
    nonreentrant_pre, nonreentrant_post = get_nonreentrant_lock(func_type)

    # Create callback_ptr, this stores a destination in the bytecode for a internal
    # function to jump to after a function has executed.
    clampers: List[LLLnode] = []

    # Allocate variable space.
    context.memory_allocator.expand_memory(sig.max_copy_size)

    _post_callback_ptr = f"{sig.name}_{sig.method_id}_post_callback_ptr"
    context.callback_ptr = context.new_internal_variable(
        typ=BaseType("uint256"))
    clampers.append(
        LLLnode.from_list(
            ["mstore", context.callback_ptr, "pass"],
            annotation="pop callback pointer",
        ))
    if sig.total_default_args > 0:
        clampers.append(LLLnode.from_list(["label", _post_callback_ptr]))

    # internal functions without return types need to jump back to
    # the calling function, as there is no return statement to handle the
    # jump.
    if sig.output_type is None:
        stop_func = [["jump", ["mload", context.callback_ptr]]]
    else:
        stop_func = [["stop"]]

    # Generate copiers
    if len(sig.base_args) == 0:
        copier = ["pass"]
        clampers.append(LLLnode.from_list(copier))
    elif sig.total_default_args == 0:
        copier = get_internal_arg_copier(
            total_size=sig.base_copy_size,
            memory_dest=MemoryPositions.RESERVED_MEMORY)
        clampers.append(LLLnode.from_list(copier))

    # Fill variable positions
    for arg in sig.args:
        if isinstance(arg.typ, ByteArrayLike):
            mem_pos = context.memory_allocator.expand_memory(
                32 * get_size_of_type(arg.typ))
            context.vars[arg.name] = VariableRecord(arg.name, mem_pos, arg.typ,
                                                    False)
        else:
            context.vars[arg.name] = VariableRecord(
                arg.name,
                MemoryPositions.RESERVED_MEMORY + arg.pos,
                arg.typ,
                False,
            )

    # internal function copiers. No clamping for internal functions.
    dyn_variable_names = [
        a.name for a in sig.base_args if isinstance(a.typ, ByteArrayLike)
    ]
    if dyn_variable_names:
        i_placeholder = context.new_internal_variable(typ=BaseType("uint256"))
        unpackers: List[Any] = []
        for idx, var_name in enumerate(dyn_variable_names):
            var = context.vars[var_name]
            ident = f"_load_args_{sig.method_id}_dynarg{idx}"
            o = make_unpacker(ident=ident,
                              i_placeholder=i_placeholder,
                              begin_pos=var.pos)
            unpackers.append(o)

        if not unpackers:
            unpackers = ["pass"]

        # 0 added to complete full overarching 'seq' statement, see internal_label.
        unpackers.append(0)
        clampers.append(
            LLLnode.from_list(
                ["seq_unchecked"] + unpackers,
                typ=None,
                annotation="dynamic unpacker",
                pos=getpos(code),
            ))

    # Function has default arguments.
    if sig.total_default_args > 0:  # Function with default parameters.

        default_sigs = sig_utils.generate_default_arg_sigs(
            code, context.sigs, context.global_ctx)
        sig_chain: List[Any] = ["seq"]

        for default_sig in default_sigs:
            sig_compare, internal_label = get_sig_statements(
                default_sig, getpos(code))

            # Populate unset default variables
            set_defaults = []
            for arg_name in get_default_names_to_set(sig, default_sig):
                value = Expr(sig.default_values[arg_name], context).lll_node
                var = context.vars[arg_name]
                left = LLLnode.from_list(var.pos,
                                         typ=var.typ,
                                         location="memory",
                                         pos=getpos(code),
                                         mutable=var.mutable)
                set_defaults.append(
                    make_setter(left, value, "memory", pos=getpos(code)))
            current_sig_arg_names = [x.name for x in default_sig.args]

            # Load all variables in default section, if internal,
            # because the stack is a linear pipe.
            copier_arg_count = len(default_sig.args)
            copier_arg_names = current_sig_arg_names

            # Order copier_arg_names, this is very important.
            copier_arg_names = [
                x.name for x in default_sig.args if x.name in copier_arg_names
            ]

            # Variables to be populated from calldata/stack.
            default_copiers: List[Any] = []
            if copier_arg_count > 0:
                # Get map of variables in calldata, with thier offsets
                offset = 4
                calldata_offset_map = {}
                for arg in default_sig.args:
                    calldata_offset_map[arg.name] = offset
                    offset += (32 if isinstance(arg.typ, ByteArrayLike) else
                               get_size_of_type(arg.typ) * 32)

                # Copy set default parameters from calldata
                dynamics = []
                for arg_name in copier_arg_names:
                    var = context.vars[arg_name]
                    if isinstance(var.typ, ByteArrayLike):
                        _size = 32
                        dynamics.append(var.pos)
                    else:
                        _size = var.size * 32
                    default_copiers.append(
                        get_internal_arg_copier(
                            memory_dest=var.pos,
                            total_size=_size,
                        ))

                # Unpack byte array if necessary.
                if dynamics:
                    i_placeholder = context.new_internal_variable(
                        typ=BaseType("uint256"))
                    for idx, var_pos in enumerate(dynamics):
                        ident = f"unpack_default_sig_dyn_{default_sig.method_id}_arg{idx}"
                        default_copiers.append(
                            make_unpacker(
                                ident=ident,
                                i_placeholder=i_placeholder,
                                begin_pos=var_pos,
                            ))
                default_copiers.append(0)  # for over arching seq, POP

            sig_chain.append([
                "if",
                sig_compare,
                [
                    "seq",
                    internal_label,
                    LLLnode.from_list(
                        ["mstore", context.callback_ptr, "pass"],
                        annotation="pop callback pointer",
                        pos=getpos(code),
                    ),
                    ["seq"] + set_defaults if set_defaults else ["pass"],
                    ["seq_unchecked"] +
                    default_copiers if default_copiers else ["pass"],
                    ["goto", _post_callback_ptr],
                ],
            ])

        # With internal functions all variable loading occurs in the default
        # function sub routine.
        _clampers = [["label", _post_callback_ptr]]

        # Function with default parameters.
        return LLLnode.from_list(
            [
                "seq",
                sig_chain,
                ["seq"] + nonreentrant_pre + _clampers +
                [parse_body(c, context)
                 for c in code.body] + nonreentrant_post + stop_func,
            ],
            typ=None,
            pos=getpos(code),
        )

    else:
        # Function without default parameters.
        sig_compare, internal_label = get_sig_statements(sig, getpos(code))
        return LLLnode.from_list(
            ["seq"] + [internal_label] + nonreentrant_pre + clampers +
            [parse_body(c, context)
             for c in code.body] + nonreentrant_post + stop_func,
            typ=None,
            pos=getpos(code),
        )
예제 #16
0
파일: events.py 프로젝트: benjyz/vyper
def pack_logging_data(arg_nodes, arg_types, context, pos):
    # Checks to see if there's any data
    if not arg_nodes:
        return ["seq"], 0, None, 0
    holder = ["seq"]
    maxlen = len(arg_nodes) * 32  # total size of all packed args (upper limit)

    # Unroll any function calls, to temp variables.
    prealloacted = {}
    for idx, node in enumerate(arg_nodes):

        if isinstance(
                node,
            (vy_ast.Str, vy_ast.Call)) and node.get("func.id") != "empty":
            expr = Expr(node, context)
            source_lll = expr.lll_node
            tmp_variable = context.new_internal_variable(source_lll.typ)
            tmp_variable_node = LLLnode.from_list(
                tmp_variable,
                typ=source_lll.typ,
                pos=getpos(node),
                location="memory",
                annotation=f"log_prealloacted {source_lll.typ}",
            )
            # Copy bytes.
            holder.append(
                make_setter(tmp_variable_node,
                            source_lll,
                            pos=getpos(node),
                            location="memory"))
            prealloacted[idx] = tmp_variable_node

    # Create internal variables for for dynamic and static args.
    static_types = []
    for typ in arg_types:
        static_types.append(
            typ if not typ.is_dynamic_size else Uint256Definition())

    requires_dynamic_offset = any(typ.is_dynamic_size for typ in arg_types)

    dynamic_offset_counter = None
    if requires_dynamic_offset:
        # TODO refactor out old type objects
        dynamic_offset_counter = context.new_internal_variable(BaseType(32))
        dynamic_placeholder = context.new_internal_variable(BaseType(32))

    static_vars = [context.new_internal_variable(i) for i in static_types]

    # Populate static placeholders.
    for i, (node, typ) in enumerate(zip(arg_nodes, arg_types)):
        placeholder = static_vars[i]
        if not isinstance(typ, ArrayValueAbstractType):
            holder, maxlen = pack_args_by_32(
                holder,
                maxlen,
                prealloacted.get(i, node),
                typ,
                context,
                placeholder,
                pos=pos,
            )

    # Dynamic position starts right after the static args.
    if requires_dynamic_offset:
        holder.append(
            LLLnode.from_list(["mstore", dynamic_offset_counter, maxlen]))

    # Calculate maximum dynamic offset placeholders, used for gas estimation.
    for typ in arg_types:
        if typ.is_dynamic_size:
            maxlen += typ.size_in_bytes

    if requires_dynamic_offset:
        datamem_start = dynamic_placeholder + 32
    else:
        datamem_start = static_vars[0]

    # Copy necessary data into allocated dynamic section.
    for i, (node, typ) in enumerate(zip(arg_nodes, arg_types)):
        if isinstance(typ, ArrayValueAbstractType):
            if isinstance(node,
                          vy_ast.Call) and node.func.get("id") == "empty":
                # TODO add support for this
                raise StructureException(
                    "Cannot use `empty` on Bytes or String types within an event log",
                    node)
            pack_args_by_32(
                holder=holder,
                maxlen=maxlen,
                arg=prealloacted.get(i, node),
                typ=typ,
                context=context,
                placeholder=static_vars[i],
                datamem_start=datamem_start,
                dynamic_offset_counter=dynamic_offset_counter,
                pos=pos,
            )

    return holder, maxlen, dynamic_offset_counter, datamem_start
예제 #17
0
def to_decimal(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == "Bytes":
        if in_arg.typ.maxlen > 32:
            raise TypeMismatch(
                f"Cannot convert bytes array of max length {in_arg.typ.maxlen} to decimal",
                expr,
            )
        num = byte_array_to_num(in_arg, expr, "int128")
        return LLLnode.from_list(["mul", num, DECIMAL_DIVISOR],
                                 typ=BaseType("decimal"),
                                 pos=getpos(expr))

    else:
        if input_type == "uint256":
            if in_arg.typ.is_literal:
                if not SizeLimits.in_bounds("int128",
                                            (in_arg.value * DECIMAL_DIVISOR)):
                    raise InvalidLiteral(
                        f"Number out of range: {in_arg.value}",
                        expr,
                    )
                else:
                    return LLLnode.from_list(["mul", in_arg, DECIMAL_DIVISOR],
                                             typ=BaseType("decimal"),
                                             pos=getpos(expr))
            else:
                return LLLnode.from_list(
                    [
                        "uclample",
                        ["mul", in_arg, DECIMAL_DIVISOR],
                        ["mload", MemoryPositions.MAXDECIMAL],
                    ],
                    typ=BaseType("decimal"),
                    pos=getpos(expr),
                )

        elif input_type == "address":
            return LLLnode.from_list(
                [
                    "mul",
                    [
                        "signextend", 15,
                        ["and", in_arg, (SizeLimits.ADDRSIZE - 1)]
                    ],
                    DECIMAL_DIVISOR,
                ],
                typ=BaseType("decimal"),
                pos=getpos(expr),
            )

        elif input_type == "bytes32":
            if in_arg.typ.is_literal:
                if not SizeLimits.in_bounds("int128",
                                            (in_arg.value * DECIMAL_DIVISOR)):
                    raise InvalidLiteral(
                        f"Number out of range: {in_arg.value}",
                        expr,
                    )
                else:
                    return LLLnode.from_list(["mul", in_arg, DECIMAL_DIVISOR],
                                             typ=BaseType("decimal"),
                                             pos=getpos(expr))
            else:
                return LLLnode.from_list(
                    [
                        "clamp",
                        ["mload", MemoryPositions.MINDECIMAL],
                        ["mul", in_arg, DECIMAL_DIVISOR],
                        ["mload", MemoryPositions.MAXDECIMAL],
                    ],
                    typ=BaseType("decimal"),
                    pos=getpos(expr),
                )

        elif input_type == "int256":
            return LLLnode.from_list(
                [
                    "seq",
                    int128_clamp(in_arg), ["mul", in_arg, DECIMAL_DIVISOR]
                ],
                typ=BaseType("decimal"),
                pos=getpos(expr),
            )

        elif input_type in ("int128", "bool"):
            return LLLnode.from_list(["mul", in_arg, DECIMAL_DIVISOR],
                                     typ=BaseType("decimal"),
                                     pos=getpos(expr))

        else:
            raise InvalidLiteral(f"Invalid input for decimal: {in_arg}", expr)