def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, LAI_Product, NDM_Product, NDVI_Product, ETref_Product, dict_crops, dict_non_crops, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 3. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used LAI_Product : str Name of the LAI product that will be used NDM_Product : str Name of the NDM product that will be used Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Three as Three import wa.Functions.Two as Two import wa.Functions.Start as Start import wa.Functions.Four as Four import wa.Generator.Sheet3 as Generate import wa.Functions.Start.Get_Dictionaries as GD ######################### Set General Parameters ############################## # Check if there is a full year selected between Startdate and Enddate, otherwise Sheet 3 cannot be produced try: years_end = pd.date_range(Startdate, Enddate, freq="A").year years_start = pd.date_range(Startdate, Enddate, freq="AS").year if (len(years_start) == 0 or len(years_end) == 0): print "Calculation period is less than a year, which is not possible for sheet 3" quit years = np.unique(np.append(years_end, years_start)) except: print "Calculation period is less than a year, which is not possible for sheet 3" quit # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" % Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based( Basin, Dir_Home) ############################# Download Data ################################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]), int(Enddate.split('-')[0]) + 1) # Find the maximum moving window value ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes( version='1.0') Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values()) for year in years: # Create Start and End date for time chunk Startdate_part = '%d-01-01' % int(year) Enddate_part = '%s-12-31' % year # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) #Set Startdate for moving average if int(year) == int(years[0]): Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset( months=Additional_Months_tail) Startdate_Moving_Average_String = Startdate_Moving_Average.strftime( '%Y-%m-%d') else: Startdate_Moving_Average_String = Startdate_part # Open variables in netcdf fh = netCDF4.Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() # Download data if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotransporation" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if not "Reference_Evapotranspiration" in Variables_NC: Data_Path_ETref = Start.Download_Data.ETreference( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product) if not "NDVI" in Variables_NC: Data_Path_NDVI = Start.Download_Data.NDVI( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_part, Enddate_part) if not "Normalized_Dry_Matter" in Variables_NC: Data_Path_NPP = Start.Download_Data.NPP( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_part, Enddate_part, NDM_Product) Data_Path_GPP = Start.Download_Data.GPP( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_part, Enddate_part, NDM_Product) ########################### Create input data ################################# if not "Normalized_Dry_Matter" in Variables_NC: # Create NDM based on MOD17 if NDM_Product == 'MOD17': # Create monthly GPP Start.Eightdaily_to_monthly_state.Nearest_Interpolate( Data_Path_GPP, Startdate_part, Enddate_part) Data_Path_NDM = Two.Calc_NDM.NPP_GPP_Based( Dir_Basin, Data_Path_GPP, Data_Path_NPP, Startdate_part, Enddate_part) if not "NDVI" in Variables_NC: # Create monthly NDVI based on MOD13 if NDVI_Product == 'MOD13': Start.Sixteendaily_to_monthly_state.Nearest_Interpolate( Data_Path_NDVI, Startdate_part, Enddate_part) ###################### Save Data as netCDF files ############################## #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly( Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data=Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________________Evaporation________________________________ # 2.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly( Data_Path_ET, Startdate_part, Enddate_part, Example_data=Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #___________________________Normalized Dry Matter__________________________ # 3.) Normalized Dry Matter if not "Normalized_Dry_Matter" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_NDM = RC.Get3Darray_time_series_monthly( Data_Path_NDM, Startdate_part, Enddate_part, Example_data=Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_NDM, "Normalized_Dry_Matter", "kg_ha", 0.01) del DataCube_NDM #_______________________Reference Evaporation______________________________ # 4.) Reference Evapotranspiration data if not "Reference_Evapotranspiration" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly( Data_Path_ETref, Startdate_part, Enddate_part, Example_data=Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01) del DataCube_ETref #____________________________________NDVI__________________________________ # 4.) Reference Evapotranspiration data if not "NDVI" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_NDVI = RC.Get3Darray_time_series_monthly( Data_Path_NDVI, Startdate_part, Enddate_part, Example_data=Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_NDVI, "NDVI", "Fraction", 0.0001) del DataCube_NDVI ############################# Calculate Sheet 3 ########################### #____________ Evapotranspiration data split in ETblue and ETgreen ____________ if not ("Blue_Evapotranspiration" in Variables_NC or "Green_Evapotranspiration" in Variables_NC): # Calculate Blue and Green ET DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green( Dir_Basin, nc_outname, ETref_Product, P_Product, Startdate, Enddate) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETblue, "Blue_Evapotranspiration", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETgreen, "Green_Evapotranspiration", "mm/month", 0.01) del DataCube_ETblue, DataCube_ETgreen #____________________________ Create the empty dictionaries ____________________________ # Create the dictionaries that are required for sheet 3 wp_y_irrigated_dictionary, wp_y_rainfed_dictionary, wp_y_non_crop_dictionary = GD.get_sheet3_empties( ) #____________________________________ Fill in the dictionaries ________________________ # Fill in the crops dictionaries wp_y_irrigated_dictionary, wp_y_rainfed_dictionary = Three.Fill_Dicts.Crop_Dictionaries( wp_y_irrigated_dictionary, wp_y_rainfed_dictionary, dict_crops, nc_outname, Dir_Basin) # Fill in the non crops dictionaries wp_y_non_crop_dictionary = Three.Fill_Dicts.Non_Crop_Dictionaries( wp_y_non_crop_dictionary, dict_non_crops) ############################ Create CSV 3 ################################# csv_fh_a, csv_fh_b = Generate.CSV.Create(wp_y_irrigated_dictionary, wp_y_rainfed_dictionary, wp_y_non_crop_dictionary, Basin, Simulation, year, Dir_Basin) ############################ Create Sheet 3 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, csv_fh_a, csv_fh_b) return ()
def Calculate(Basin, P_Product, ET_Product, Inflow_Text_Files, Reservoirs_Lakes_Calculations, Startdate, Enddate, Simulation): ''' This functions consists of the following sections: 1. Set General Parameters 2. Download Data 3. Convert the RAW data to NETCDF files 4. Create Mask based on LU map 5. Calculate Runoff based on Budyko 6. Add inflow in Runoff 7. Calculate River flow 7.1 Route Runoff 7.2 Add Reservoirs 7.3 Add surface water withdrawals ''' # import General modules import os import gdal import numpy as np import pandas as pd import copy # import WA plus modules from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Five as Five import wa.Functions.Start as Start ######################### 1. Set General Parameters ############################## # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) if not os.path.exists(Dir_Basin): os.makedirs(Dir_Basin) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, LU_dataset = Start.Boundaries.Determine_LU_Based(Basin) LU_data = RC.Open_tiff_array(LU_dataset) geo_out_LU, proj_LU, size_X_LU, size_Y_LU = RC.Open_array_info(LU_dataset) # Define resolution of SRTM Resolution = '15s' # Get the amount of months Amount_months = len(pd.date_range(Startdate, Enddate, freq='MS')) Amount_months_reservoirs = Amount_months + 1 # Startdate for moving window Budyko Startdate_2months_Timestamp = pd.Timestamp(Startdate) - pd.DateOffset( months=2) Startdate_2months = Startdate_2months_Timestamp.strftime('%Y-%m-%d') ############################# 2. Download Data ################################### # Download data Data_Path_P = Start.Download_Data.Precipitation( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate, P_Product) Data_Path_ET = Start.Download_Data.Evapotranspiration( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate, ET_Product) Data_Path_DEM = Start.Download_Data.DEM( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) if Resolution is not '3s': Data_Path_DEM = Start.Download_Data.DEM( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) Data_Path_ETref = Start.Download_Data.ETreference( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate) Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']]) Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly') ###################### 3. Convert the RAW data to NETCDF files ############################## # The sequence of converting the data is: # DEM # DEM flow directions # Precipitation # Evapotranspiration # Reference Evapotranspiration #_____________________________________DEM__________________________________ # Get the data of DEM and save as nc, This dataset is also used as reference for others Example_dataset = os.path.join(Dir_Basin, Data_Path_DEM, 'DEM_HydroShed_m_%s.tif' % Resolution) DEMdest = gdal.Open(Example_dataset) Xsize_CR = int(DEMdest.RasterXSize) Ysize_CR = int(DEMdest.RasterYSize) DataCube_DEM_CR = DEMdest.GetRasterBand(1).ReadAsArray() Name_NC_DEM_CR = DC.Create_NC_name('DEM_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_CR): DC.Save_as_NC(Name_NC_DEM_CR, DataCube_DEM_CR, 'DEM_CR', Example_dataset) DEMdest = None #___________________________________DEM Dir________________________________ # Get the data of flow direction and save as nc. Dir_dataset = os.path.join(Dir_Basin, Data_Path_DEM_Dir, 'DIR_HydroShed_-_%s.tif' % Resolution) DEMDirdest = gdal.Open(Dir_dataset) DataCube_DEM_Dir_CR = DEMDirdest.GetRasterBand(1).ReadAsArray() Name_NC_DEM_Dir_CR = DC.Create_NC_name('DEM_Dir_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir_CR): DC.Save_as_NC(Name_NC_DEM_Dir_CR, DataCube_DEM_Dir_CR, 'DEM_Dir_CR', Example_dataset) DEMDirdest = None del DataCube_DEM_Dir_CR #______________________________ Precipitation______________________________ # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Precipitation data Name_NC_Prec_CR = DC.Create_NC_name('Prec_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Prec_CR): # Get the data of Precipitation and save as nc DataCube_Prec_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_Prec_CR, DataCube_Prec_CR, 'Prec_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_Prec_CR #____________________________ Evapotranspiration___________________________ # Evapotranspiration data info = [ 'monthly', 'mm', ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_ET_CR = DC.Create_NC_name('ET_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ET_CR): # Get the data of Evaporation and save as nc DataCube_ET_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ET_CR, DataCube_ET_CR, 'ET_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_ET_CR #_______________________Reference Evapotranspiration_______________________ # Reference Evapotranspiration data Name_NC_ETref_CR = DC.Create_NC_name('ETref_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref_CR): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ETref, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ETref_CR, DataCube_ETref_CR, 'ETref_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_ETref_CR #_______________________fraction surface water _______________________ Name_NC_frac_sw_CR = DC.Create_NC_name('Fraction_SW_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_frac_sw_CR): DataCube_frac_sw = np.ones_like(LU_data) * np.nan import wa.Functions.Start.Get_Dictionaries as GD # Get dictionaries and keys lulc = GD.get_sheet5_classes() lulc_dict = GD.get_sheet5_classes().keys() consumed_frac_dict = GD.sw_supply_fractions_sheet5() for key in lulc_dict: Numbers = lulc[key] for LU_nmbr in Numbers: Mask = np.zeros_like(LU_data) Mask[LU_data == LU_nmbr] = 1 DataCube_frac_sw[Mask == 1] = consumed_frac_dict[key] dest_frac_sw = DC.Save_as_MEM(DataCube_frac_sw, geo_out_LU, proj_LU) dest_frac_sw_CR = RC.reproject_dataset_example(dest_frac_sw, Example_dataset) DataCube_frac_sw_CR = dest_frac_sw_CR.ReadAsArray() DataCube_frac_sw_CR[DataCube_frac_sw_CR == 0] = np.nan DC.Save_as_NC(Name_NC_frac_sw_CR, DataCube_frac_sw_CR, 'Fraction_SW_CR', Example_dataset, Scaling_factor=0.01) del DataCube_frac_sw_CR del DataCube_DEM_CR ##################### 4. Create Mask based on LU map ########################### # Now a mask will be created to define the area of interest (pixels where there is a landuse defined) #_____________________________________LU___________________________________ destLU = RC.reproject_dataset_example(LU_dataset, Example_dataset, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() Raster_Basin_CR = np.zeros([Ysize_CR, Xsize_CR]) Raster_Basin_CR[DataCube_LU_CR > 0] = 1 Name_NC_Basin_CR = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Basin_CR): DC.Save_as_NC(Name_NC_Basin_CR, Raster_Basin_CR, 'Basin_CR', Example_dataset) #del Raster_Basin ''' Name_NC_Basin = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Basin): Raster_Basin = RC.Vector_to_Raster(Dir_Basin, Shape_file_name_shp, Example_dataset) Raster_Basin = np.clip(Raster_Basin, 0, 1) DC.Save_as_NC(Name_NC_Basin, Raster_Basin, 'Basin_CR', Example_dataset) #del Raster_Basin ''' ###################### 5. Calculate Runoff based on Budyko ########################### # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Define the output names of section 5 and 6 Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info) Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_CR if not os.path.exists(Name_NC_Runoff_CR): # Calculate runoff based on Budyko DataCube_Runoff_CR = Five.Budyko.Calc_runoff(Name_NC_ETref_CR, Name_NC_Prec_CR) # Save the runoff as netcdf DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Runoff_CR ''' ###################### Calculate Runoff with P min ET ########################### Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Runoff_CR): ET = RC.Open_nc_array(Name_NC_ET_CR) P = RC.Open_nc_array(Name_NC_Prec_CR) DataCube_Runoff_CR = P - ET DataCube_Runoff_CR[:,:,:][DataCube_Runoff_CR<=0.1] = 0 DataCube_Runoff_CR[:,:,:][np.isnan(DataCube_Runoff_CR)] = 0 DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Runoff_CR ''' ############### 6. Add inflow in basin by using textfile ######################### # add inlets if there are textfiles defined if len(Inflow_Text_Files) > 0: # Create name of the Runoff with inlets Name_NC_Runoff_with_Inlets_CR = DC.Create_NC_name( 'Runoff_with_Inlets_CR', Simulation, Dir_Basin, 5, info) # Use this runoff name for the routing (it will overwrite the runoff without inlets) Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_with_Inlets_CR # Create the file if it not exists if not os.path.exists(Name_NC_Runoff_with_Inlets_CR): # Calculate the runoff that will be routed by including the inlets DataCube_Runoff_with_Inlets_CR = Five.Inlets.Add_Inlets( Name_NC_Runoff_CR, Inflow_Text_Files) # Save this runoff as netcdf DC.Save_as_NC(Name_NC_Runoff_with_Inlets_CR, DataCube_Runoff_with_Inlets_CR, 'Runoff_with_Inlets_CR', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Runoff_with_Inlets_CR ######################### 7. Now the surface water is calculated ################# # Names for dicionaries and nc files # CR1 = Natural_flow with only green water # CR2 = Natural_flow with only green water and reservoirs # CR3 = Flow with green, blue and reservoirs ######################### 7.1 Apply Channel Routing ############################### # Create the name for the netcdf outputs for section 7.1 info = [ 'monthly', 'pixels', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Acc_Pixels_CR = DC.Create_NC_name('Acc_Pixels_CR', Simulation, Dir_Basin, 5) info = [ 'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Discharge_CR1 = DC.Create_NC_name('Discharge_CR1', Simulation, Dir_Basin, 5, info) # If one of the outputs does not exists, run this part if not (os.path.exists(Name_NC_Acc_Pixels_CR) and os.path.exists(Name_NC_Discharge_CR1)): Accumulated_Pixels_CR, Discharge_CR1 = Five.Channel_Routing.Channel_Routing( Name_NC_DEM_Dir_CR, Name_NC_Runoff_for_Routing_CR, Name_NC_Basin_CR, Example_dataset, Degrees=1) # Save Results DC.Save_as_NC(Name_NC_Acc_Pixels_CR, Accumulated_Pixels_CR, 'Acc_Pixels_CR', Example_dataset) DC.Save_as_NC(Name_NC_Discharge_CR1, Discharge_CR1, 'Discharge_CR1', Example_dataset, Startdate, Enddate, 'monthly') ################# Calculate the natural river and river zones ################# Name_NC_Rivers_CR = DC.Create_NC_name('Rivers_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers_CR): # Open routed discharge array Discharge_CR1 = RC.Open_nc_array(Name_NC_Discharge_CR1) Raster_Basin = RC.Open_nc_array(Name_NC_Basin_CR) # Calculate mean average over the period if len(np.shape(Discharge_CR1)) > 2: Routed_Discharge_Ave = np.nanmean(Discharge_CR1, axis=0) else: Routed_Discharge_Ave = Discharge_CR1 # Define the 2% highest pixels as rivers Rivers = np.zeros([ np.size(Routed_Discharge_Ave, 0), np.size(Routed_Discharge_Ave, 1) ]) Routed_Discharge_Ave[Raster_Basin != 1] = np.nan Routed_Discharge_Ave_number = np.nanpercentile(Routed_Discharge_Ave, 98) Rivers[ Routed_Discharge_Ave > Routed_Discharge_Ave_number] = 1 # if yearly average is larger than 5000km3/month that it is a river # Save the river file as netcdf file DC.Save_as_NC(Name_NC_Rivers_CR, Rivers, 'Rivers_CR', Example_dataset) ########################## Create river directories ########################### Name_py_River_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'River_dict_CR1_simulation%d.npy' % (Simulation)) Name_py_DEM_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'DEM_dict_CR1_simulation%d.npy' % (Simulation)) Name_py_Distance_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Distance_dict_CR1_simulation%d.npy' % (Simulation)) if not (os.path.exists(Name_py_River_dict_CR1) and os.path.exists(Name_py_DEM_dict_CR1) and os.path.exists(Name_py_Distance_dict_CR1)): # Get river and DEM dict River_dict_CR1, DEM_dict_CR1, Distance_dict_CR1 = Five.Create_Dict.Rivers_General( Name_NC_DEM_CR, Name_NC_DEM_Dir_CR, Name_NC_Acc_Pixels_CR, Name_NC_Rivers_CR, Example_dataset) np.save(Name_py_River_dict_CR1, River_dict_CR1) np.save(Name_py_DEM_dict_CR1, DEM_dict_CR1) np.save(Name_py_Distance_dict_CR1, Distance_dict_CR1) else: # Load River_dict_CR1 = np.load(Name_py_River_dict_CR1).item() DEM_dict_CR1 = np.load(Name_py_DEM_dict_CR1).item() Distance_dict_CR1 = np.load(Name_py_Distance_dict_CR1).item() Name_py_Discharge_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR1_simulation%d.npy' % (Simulation)) if not os.path.exists(Name_py_Discharge_dict_CR1): # Get discharge dict Discharge_dict_CR1 = Five.Create_Dict.Discharge( Name_NC_Discharge_CR1, River_dict_CR1, Amount_months, Example_dataset) np.save(Name_py_Discharge_dict_CR1, Discharge_dict_CR1) else: # Load Discharge_dict_CR1 = np.load(Name_py_Discharge_dict_CR1).item() ###################### 7.2 Calculate surface water storage characteristics ###################### Name_py_Discharge_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_River_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'River_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_DEM_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'DEM_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_Distance_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Distance_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_Diff_Water_Volume = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Diff_Water_Volume_CR2_simulation%d.npy' % (Simulation)) Name_py_Regions = os.path.join(Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Regions_simulation%d.npy' % (Simulation)) if not (os.path.exists(Name_py_Discharge_dict_CR2) and os.path.exists(Name_py_River_dict_CR2) and os.path.exists(Name_py_DEM_dict_CR2) and os.path.exists(Name_py_Distance_dict_CR2)): # Copy dicts as starting adding reservoir Discharge_dict_CR2 = copy.deepcopy(Discharge_dict_CR1) River_dict_CR2 = copy.deepcopy(River_dict_CR1) DEM_dict_CR2 = copy.deepcopy(DEM_dict_CR1) Distance_dict_CR2 = copy.deepcopy(Distance_dict_CR1) if Reservoirs_Lakes_Calculations == 1: # define input tiffs for surface water calculations input_JRC = os.path.join(Dir_Basin, Data_Path_JRC_occurrence, 'JRC_Occurrence_percent.tif') DEM_dataset = os.path.join(Dir_Basin, Data_Path_DEM, 'DEM_HydroShed_m_3s.tif') sensitivity = 700 # 900 is less sensitive 1 is very sensitive Regions = Five.Reservoirs.Calc_Regions(Name_NC_Basin_CR, input_JRC, sensitivity, Boundaries) Diff_Water_Volume = np.zeros( [len(Regions), Amount_months_reservoirs - 1, 3]) reservoir = 0 for region in Regions: popt = Five.Reservoirs.Find_Area_Volume_Relation( region, input_JRC, DEM_dataset) Area_Reservoir_Values = Five.Reservoirs.GEE_calc_reservoir_area( region, Startdate, Enddate) Diff_Water_Volume[ reservoir, :, :] = Five.Reservoirs.Calc_Diff_Storage( Area_Reservoir_Values, popt) reservoir += 1 ################# 7.3 Add storage reservoirs and change outflows ################## Discharge_dict_CR2, River_dict_CR2, DEM_dict_CR2, Distance_dict_CR2 = Five.Reservoirs.Add_Reservoirs( Name_NC_Rivers_CR, Name_NC_Acc_Pixels_CR, Diff_Water_Volume, River_dict_CR2, Discharge_dict_CR2, DEM_dict_CR2, Distance_dict_CR2, Regions, Example_dataset) np.save(Name_py_Regions, Regions) np.save(Name_py_Diff_Water_Volume, Diff_Water_Volume) np.save(Name_py_Discharge_dict_CR2, Discharge_dict_CR2) np.save(Name_py_River_dict_CR2, River_dict_CR2) np.save(Name_py_DEM_dict_CR2, DEM_dict_CR2) np.save(Name_py_Distance_dict_CR2, Distance_dict_CR2) else: # Load Discharge_dict_CR2 = np.load(Name_py_Discharge_dict_CR2).item() River_dict_CR2 = np.load(Name_py_River_dict_CR2).item() DEM_dict_CR2 = np.load(Name_py_DEM_dict_CR2).item() Distance_dict_CR2 = np.load(Name_py_Distance_dict_CR2).item() ####################### 7.3 Add surface water withdrawals ############################# Name_py_Discharge_dict_CR3 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR3_simulation%d.npy' % (Simulation)) if not os.path.exists(Name_py_Discharge_dict_CR3): Discharge_dict_CR3, DataCube_ETblue_m3 = Five.Irrigation.Add_irrigation( Discharge_dict_CR2, River_dict_CR2, Name_NC_Rivers_CR, Name_NC_ET_CR, Name_NC_ETref_CR, Name_NC_Prec_CR, Name_NC_Basin_CR, Name_NC_frac_sw_CR, Startdate, Enddate, Example_dataset) np.save(Name_py_Discharge_dict_CR3, Discharge_dict_CR3) # save ETblue as nc info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 5, info) DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue_m3, 'ETblue', Example_dataset, Startdate, Enddate, 'monthly') else: Discharge_dict_CR3 = np.load(Name_py_Discharge_dict_CR3).item() ################################# Plot graph ################################## # Draw graph Five.Channel_Routing.Graph_DEM_Distance_Discharge( Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2, Startdate, Enddate, Example_dataset) ######################## Change data to fit the LU data ####################### # Discharge # Define info for the nc files info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Discharge = DC.Create_NC_name('Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Discharge): # Get the data of Reference Evapotranspiration and save as nc DataCube_Discharge_CR = DC.Convert_dict_to_array( River_dict_CR2, Discharge_dict_CR3, Example_dataset) DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Discharge_CR # DEM Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR) DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset) del DataCube_DEM # flow direction Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR) DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset) del DataCube_DEM_Dir # Precipitation # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Prec): # Get the data of Reference Evapotranspiration and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Prec # Evapotranspiration Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_ET): # Get the data of Reference Evapotranspiration and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET # Reference Evapotranspiration data Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ETref # Rivers Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers): # Get the data of Reference Evapotranspiration and save as nc Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR) DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data) DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset) del DataCube_Rivers, Rivers_CR # Discharge # Define info for the nc files info = [ 'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Routed_Discharge): # Get the data of Reference Evapotranspiration and save as nc Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge) DataCube_Routed_Discharge = RC.resize_array_example( Routed_Discharge_CR, LU_data) DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge, 'Routed_Discharge', LU_dataset, Startdate, Enddate, 'monthly') del DataCube_Routed_Discharge, Routed_Discharge_CR # Get raster information geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) Rivers = RC.Open_nc_array(Name_NC_Rivers_CR) # Create ID Matrix y, x = np.indices((size_Y, size_X)) ID_Matrix = np.int32( np.ravel_multi_index(np.vstack((y.ravel(), x.ravel())), (size_Y, size_X), mode='clip').reshape(x.shape)) + 1 # Get tiff array time dimension: time_dimension = int(np.shape(Discharge_dict_CR3[0])[0]) # create an empty array Result = np.zeros([time_dimension, size_Y, size_X]) for river_part in range(0, len(River_dict_CR2)): for river_pixel in range(1, len(River_dict_CR2[river_part])): river_pixel_ID = River_dict_CR2[river_part][river_pixel] if len(np.argwhere(ID_Matrix == river_pixel_ID)) > 0: row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:] Result[:, row, col] = Discharge_dict_CR3[river_part][:, river_pixel] print(river_part) Outflow = Discharge_dict_CR3[0][:, 1] for i in range(0, time_dimension): output_name = r'C:/testmap/rtest_%s.tif' % i Result_one = Result[i, :, :] DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84") import os # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset, Startdate, Enddate, 'monthly') return ()
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, ETref_Product, DEM_Product, Water_Occurence_Product, Inflow_Text_Files, WaterPIX_filename, Reservoirs_GEE_on_off, Supply_method, Startdate, Enddate, Simulation): ''' This functions consists of the following sections: 1. Set General Parameters 2. Download Data 3. Convert the RAW data to NETCDF files 4. Run SurfWAT ''' # import General modules import os import gdal import numpy as np import pandas as pd from netCDF4 import Dataset # import WA plus modules from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Five as Five import wa.Functions.Start as Start import wa.Functions.Start.Get_Dictionaries as GD ######################### 1. Set General Parameters ############################## # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home) geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) # Define resolution of SRTM Resolution = '15s' # Find the maximum moving window value ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0') Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values()) ############## Cut dates into pieces if it is needed ###################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) # Open variables in netcdf fh = Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() # Create Start and End date for time chunk Startdate_part = '%d-01-01' %int(year) Enddate_part = '%s-12-31' %int(year) if int(year) == int(years[0]): Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail) Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d') else: Startdate_Moving_Average_String = Startdate_part ############################# 2. Download Data ################################### # Download data if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotranspiration" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC): Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product) if Reservoirs_GEE_on_off == 1 and not ("Water_Occurrence" in Variables_NC): Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Water_Occurence_Product) input_JRC = os.path.join(Data_Path_JRC_occurrence, "JRC_Occurrence_percent.tif") else: input_JRC = None # WaterPIX input Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product) Data_Path_DEM = Start.Download_Data.DEM(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product) ###################### 3. Convert the RAW data to NETCDF files ############################## # The sequence of converting the data into netcdf is: # Precipitation # Evapotranspiration # Reference Evapotranspiration # DEM flow directions #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________________Evaporation________________________________ # 2.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #_______________________Reference Evaporation______________________________ # 3.) Reference Evapotranspiration data if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC): # Get the data of Precipitation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01) del DataCube_ETref #____________________________fraction surface water _______________________ DataCube_frac_sw = np.ones([size_Y, size_X]) * np.nan import wa.Functions.Start.Get_Dictionaries as GD # Open LU dataset DataCube_LU = RC.Open_nc_array(nc_outname, "Landuse") # Get dictionaries and keys lulc = GD.get_sheet5_classes() lulc_dict = GD.get_sheet5_classes().keys() consumed_frac_dict = GD.sw_supply_fractions() for key in lulc_dict: Numbers = lulc[key] for LU_nmbr in Numbers: DataCube_frac_sw[DataCube_LU==LU_nmbr] = consumed_frac_dict[key] DC.Add_NC_Array_Static(nc_outname, DataCube_frac_sw, "Fraction_Surface_Water_Supply", "fraction", 0.01) del DataCube_frac_sw, DataCube_LU ################### 4. Calculate Runoff (2 methods: a = Budyko and b = WaterPIX) ##################### ################ 4a. Calculate Runoff based on Precipitation and Evapotranspiration ################## if (Supply_method == "Fraction" and not "Surface_Runoff" in Variables_NC): # Calculate runoff based on Budyko DataCube_Runoff = Five.Fraction_Based.Calc_surface_runoff(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01) del DataCube_Runoff ###################### 4b. Get Runoff from WaterPIX ########################### if (Supply_method == "WaterPIX" and not "Surface_Runoff" in Variables_NC): # Get WaterPIX data WaterPIX_Var = 'TotalRunoff_M' DataCube_Runoff = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate_part, Enddate_part) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01) del DataCube_Runoff ####################### 5. Calculate Extraction (2 methods: a = Fraction, b = WaterPIX) ############################# ###################### 5a. Get extraction from fraction method by using budyko ########################### if (Supply_method == "Fraction" and not "Surface_Withdrawal" in Variables_NC): DataCube_surface_withdrawal = Five.Fraction_Based.Calc_surface_withdrawal(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01) del DataCube_surface_withdrawal #################################### 5b. Get extraction from WaterPIX #################################### if (Supply_method == "WaterPIX" and not "Surface_Withdrawal" in Variables_NC): WaterPIX_Var = 'Supply_M' DataCube_Supply = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate, Enddate) # Open array with surface water fractions DataCube_frac_sw = RC.Open_nc_array(nc_outname, "Fraction_Surface_Water_Supply") # Total amount of ETblue taken out of rivers DataCube_surface_withdrawal = DataCube_Supply * DataCube_frac_sw[None,:,:] # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01) del DataCube_surface_withdrawal ################################## 5. Run SurfWAT ##################################### import wa.Models.SurfWAT as SurfWAT # Define formats of input data Format_DEM = "TIFF" # or "TIFF" Format_Runoff = "NetCDF" # or "TIFF" Format_Extraction = "NetCDF" # or "TIFF" Format_DEM_dir = "TIFF" # or "TIFF" Format_Basin = "NetCDF" # or "TIFF" # Give path (for tiff) or file (netcdf) input_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_in_%d.nc" %year) output_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_out_%d.nc" %year) # Create Input File for SurfWAT SurfWAT.Create_input_nc.main(Data_Path_DEM_Dir, Data_Path_DEM, os.path.dirname(nc_outname), os.path.dirname(nc_outname), os.path.dirname(nc_outname), Startdate, Enddate, input_nc, Resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction) # Run SurfWAT SurfWAT.Run_SurfWAT.main(input_nc, output_nc, input_JRC, Inflow_Text_Files, Reservoirs_GEE_on_off) ''' ################################# Plot graph ################################## # Draw graph Five.Channel_Routing.Graph_DEM_Distance_Discharge(Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2, Startdate, Enddate, Example_dataset) ######################## Change data to fit the LU data ####################### # Discharge # Define info for the nc files info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Discharge = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Discharge): # Get the data of Reference Evapotranspiration and save as nc DataCube_Discharge_CR = DC.Convert_dict_to_array(River_dict_CR2, Discharge_dict_CR3, Example_dataset) DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge_End_CR', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Discharge_CR ''' ''' # DEM Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR) DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset) del DataCube_DEM # flow direction Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR) DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset) del DataCube_DEM_Dir # Precipitation # Define info for the nc files info = ['monthly','mm', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Prec): # Get the data of Reference Evapotranspiration and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Prec # Evapotranspiration Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_ET): # Get the data of Reference Evapotranspiration and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET # Reference Evapotranspiration data Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ETref # Rivers Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers): # Get the data of Reference Evapotranspiration and save as nc Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR) DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data) DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset) del DataCube_Rivers, Rivers_CR # Discharge # Define info for the nc files info = ['monthly','m3', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Routed_Discharge): # Get the data of Reference Evapotranspiration and save as nc Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge) DataCube_Routed_Discharge = RC.resize_array_example(Routed_Discharge_CR, LU_data) DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge, 'Routed_Discharge', LU_dataset, Startdate, Enddate, 'monthly') del DataCube_Routed_Discharge, Routed_Discharge_CR # Get raster information geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) Rivers = RC.Open_nc_array(Name_NC_Rivers_CR) # Create ID Matrix y,x = np.indices((size_Y, size_X)) ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y,size_X),mode='clip').reshape(x.shape)) + 1 # Get tiff array time dimension: time_dimension = int(np.shape(Discharge_dict_CR3[0])[0]) # create an empty array Result = np.zeros([time_dimension, size_Y, size_X]) for river_part in range(0,len(River_dict_CR2)): for river_pixel in range(1,len(River_dict_CR2[river_part])): river_pixel_ID = River_dict_CR2[river_part][river_pixel] if len(np.argwhere(ID_Matrix == river_pixel_ID))>0: row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:] Result[:,row,col] = Discharge_dict_CR3[river_part][:,river_pixel] print(river_part) Outflow = Discharge_dict_CR3[0][:,1] for i in range(0,time_dimension): output_name = r'C:/testmap/rtest_%s.tif' %i Result_one = Result[i, :, :] DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84") import os # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset, Startdate, Enddate, 'monthly') ''' return()
def Calculate(Basin, P_Product, ET_Product, LAI_Product, NDM_Product, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 2. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used LAI_Product : str Name of the LAI product that will be used NDM_Product : str Name of the NDM product that will be used Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Two as Two import wa.Functions.Start as Start import wa.Generator.Sheet2 as Generate ######################### Set General Parameters ############################## # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) if not os.path.exists(Dir_Basin): os.makedirs(Dir_Basin) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin) ############################# Download Data ################################### # Set the NPP and GPP data for the whole year StartYear = Startdate[:4] EndYear = Enddate[:4] StartdateNDM = '%d-01-01' % int(StartYear) EnddateNDM = '%d-12-31' % int(EndYear) # Download data Data_Path_P = Start.Download_Data.Precipitation( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate, Enddate, P_Product) Data_Path_ET = Start.Download_Data.Evapotranspiration( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate, Enddate, ET_Product) Data_Path_LAI = Start.Download_Data.LAI( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate, Enddate, LAI_Product) if NDM_Product == 'MOD17': Data_Path_NPP = Start.Download_Data.NPP( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], StartdateNDM, EnddateNDM, NDM_Product) Data_Path_GPP = Start.Download_Data.GPP( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], StartdateNDM, EnddateNDM, NDM_Product) Data_Path_P_Daily = os.path.join(Data_Path_P, 'Daily') Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly') ########################### Create input data ################################# # Create Rainy Days based on daily CHIRPS Data_Path_RD = Two.Rainy_Days.Calc_Rainy_Days(Dir_Basin, Data_Path_P_Daily, Startdate, Enddate) # Create monthly LAI and GPP Dir_path_LAI = os.path.join(Dir_Basin, Data_Path_LAI) Start.Eightdaily_to_monthly_state.Nearest_Interpolate( Dir_path_LAI, Startdate, Enddate) Dir_path_GPP = os.path.join(Dir_Basin, Data_Path_GPP) Start.Eightdaily_to_monthly_state.Nearest_Interpolate( Dir_path_GPP, StartdateNDM, EnddateNDM) # Create NDM based on MOD17 if NDM_Product == 'MOD17': Data_Path_NDM = Two.Calc_NDM.NPP_GPP_Based(Dir_Basin, Data_Path_GPP, Data_Path_NPP, Startdate, Enddate) ###################### Save Data as netCDF files ############################## #___________________________________Land Use_______________________________ # Get the data of LU and save as nc, This dataset is also used as reference for others LUdest = gdal.Open(Example_dataset) DataCube_LU = LUdest.GetRasterBand(1).ReadAsArray() Name_NC_LU = DC.Create_NC_name('LU', Simulation, Dir_Basin, 2) if not os.path.exists(Name_NC_LU): DC.Save_as_NC(Name_NC_LU, DataCube_LU, 'LU', Example_dataset) LUdest = None del DataCube_LU #______________________________Precipitation_______________________________ # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Precipitation data Name_NC_P = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 2, info) if not os.path.exists(Name_NC_P): # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_P, DataCube_Prec, 'Prec', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Prec #_______________________________Evaporation________________________________ # Evapotranspiration data Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 2, info) if not os.path.exists(Name_NC_ET): # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET #___________________________Normalized Dry Matter__________________________ # Define info for the nc files info = [ 'monthly', 'kg_ha-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_NDM = DC.Create_NC_name('NDM', Simulation, Dir_Basin, 2, info) if not os.path.exists(Name_NC_NDM): # Get the data of Evaporation and save as nc DataCube_NDM = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_NDM, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_NDM, DataCube_NDM, 'NDM', Example_dataset, Startdate, Enddate, 'monthly', 100) del DataCube_NDM #_______________________________Rainy Days_________________________________ # Define info for the nc files info = [ 'monthly', 'days', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_RD = DC.Create_NC_name('RD', Simulation, Dir_Basin, 2, info) if not os.path.exists(Name_NC_RD): # Get the data of Evaporation and save as nc DataCube_RD = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_RD, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_RD, DataCube_RD, 'RD', Example_dataset, Startdate, Enddate, 'monthly', 100) del DataCube_RD #_______________________________Leaf Area Index____________________________ # Define info for the nc files info = [ 'monthly', 'm2-m-2', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_LAI = DC.Create_NC_name('LAI', Simulation, Dir_Basin, 2, info) if not os.path.exists(Name_NC_LAI): # Get the data of Evaporation and save as nc DataCube_LAI = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_LAI, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_LAI, DataCube_LAI, 'LAI', Example_dataset, Startdate, Enddate, 'monthly', 1) del DataCube_LAI ####################### Calculations Sheet 2 ############################## DataCube_I, DataCube_T, DataCube_E = Two.SplitET.ITE( Dir_Basin, Name_NC_ET, Name_NC_LAI, Name_NC_P, Name_NC_RD, Name_NC_NDM, Name_NC_LU, Startdate, Enddate, Simulation) ############################ Create CSV 2 ################################# Dir_Basin_CSV = Generate.CSV.Create(Dir_Basin, Simulation, Basin, Startdate, Enddate, Name_NC_LU, DataCube_I, DataCube_T, DataCube_E, Example_dataset) ############################ Create Sheet 2 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV) return ()
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, LAI_Product, ETref_Product, Runoff_Product, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 4. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used LAI_Product : str Name of the LAI product that will be used Runoff_Product : str Name of the Runoff product that will be used Moving_Averiging_Length, int Defines the length of the moving average Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Four as Four import wa.Functions.Start as Start import wa.Generator.Sheet4 as Generate import wa.Functions.Start.Get_Dictionaries as GD ######################### Set General Parameters ############################## # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home) # Find the maximum moving window value ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0') Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values()) ############## Cut dates into pieces if it is needed ###################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) # Open variables in netcdf fh = Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() # Create Start and End date for time chunk Startdate_part = '%d-01-01' %int(year) Enddate_part = '%s-12-31' %int(year) if int(year) == int(years[0]): Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail) Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d') else: Startdate_Moving_Average_String = Startdate_part ############################# Download Data ################################### # Download data if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotranspiration" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if not "Reference_Evapotranspiration" in Variables_NC: Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product) if not "Grey_Water_Footprint" in Variables_NC: Data_Path_GWF = Start.Download_Data.GWF(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']]) if not "Theta_Saturated_Topsoil" in Variables_NC: Data_Path_ThetaSat_topsoil = Start.Download_Data.Soil_Properties(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Para = 'ThetaSat_TopSoil') ###################### Save Data as netCDF files ############################## #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________Reference Evaporation______________________________ # 2.) Reference Evapotranspiration data if not "Reference_Evapotranspiration" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01) del DataCube_ETref #_______________________________Evaporation________________________________ # 3.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #_____________________________________GWF__________________________________ # 4.) Grey Water Footprint data if not "Grey_Water_Footprint" in Variables_NC: # Get the data of grey water footprint and save as nc GWF_Filepath = os.path.join(Dir_Basin, Data_Path_GWF, "Gray_Water_Footprint_Fraction.tif") dest_GWF = RC.reproject_dataset_example(GWF_Filepath, Example_dataset, method=1) DataCube_GWF = dest_GWF.GetRasterBand(1).ReadAsArray() DC.Add_NC_Array_Static(nc_outname, DataCube_GWF, "Grey_Water_Footprint", "fraction", 0.0001) del DataCube_GWF ####################### Calculations Sheet 4 ############################## ############## Cut dates into pieces if it is needed ###################### years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: if len(years) > 1.0: if year is years[0]: Startdate_part = Startdate Enddate_part = '%s-12-31' %year if year is years[-1]: Startdate_part = '%s-01-01' %year Enddate_part = Enddate else: Startdate_part = Startdate Enddate_part = Enddate #____________ Evapotranspiration data split in ETblue and ETgreen ____________ if not ("Blue_Evapotranspiration" in Variables_NC or "Green_Evapotranspiration" in Variables_NC): # Calculate Blue and Green ET DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green(Dir_Basin, nc_outname, ETref_Product, P_Product, Startdate, Enddate) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETblue, "Blue_Evapotranspiration", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETgreen, "Green_Evapotranspiration", "mm/month", 0.01) del DataCube_ETblue, DataCube_ETgreen #____________ Calculate non-consumend and Total supply maps by using fractions and consumed maps (blue ET) ____________ if not ("Total_Supply" in Variables_NC or "Non_Consumed_Water" in Variables_NC): # Do the calculations DataCube_Total_Supply, DataCube_Non_Consumed = Four.Total_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part) # Save the Total Supply and non consumed data as NetCDF files DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply, "Total_Supply", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_Non_Consumed, "Non_Consumed_Water", "mm/month", 0.01) del DataCube_Total_Supply, DataCube_Non_Consumed #____________ Apply fractions over total supply to calculate gw and sw supply ____________ if not ("Total_Supply_Surface_Water" in Variables_NC or "Total_Supply_Ground_Water" in Variables_NC): # Do the calculations DataCube_Total_Supply_SW, DataCube_Total_Supply_GW = Four.SplitGW_SW_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part) # Save the Total Supply surface water and Total Supply ground water data as NetCDF files DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_SW, "Total_Supply_Surface_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_GW, "Total_Supply_Ground_Water", "mm/month", 0.01) del DataCube_Total_Supply_SW, DataCube_Total_Supply_GW #____________ Apply gray water footprint fractions to calculated non recoverable flow based on the non consumed flow ____________ if not ("Non_Recovable_Flow" in Variables_NC or "Recovable_Flow" in Variables_NC): # Calculate the non recovable flow and recovable flow by using Grey Water Footprint values DataCube_NonRecovableFlow, Datacube_RecovableFlow = Four.SplitNonConsumed_NonRecov.GWF_Based(nc_outname, Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow, "Non_Recovable_Flow", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow, "Recovable_Flow", "mm/month", 0.01) del DataCube_NonRecovableFlow, Datacube_RecovableFlow #____________Apply fractions to calculate the non recovarable SW/GW and recovarable SW/GW ____________ # 1. Non recovarable flow if not ("Non_Recovable_Flow_Ground_Water" in Variables_NC or "Non_Recovable_Flow_Surface_Water" in Variables_NC): # Calculate the non recovable return flow to ground and surface water DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Non_Recovable_Flow", Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow_Return_GW, "Non_Recovable_Flow_Ground_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_NonRecovableFlow_Return_SW, "Non_Recovable_Flow_Surface_Water", "mm/month", 0.01) del DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW # 2. Recovarable flow if not ("Recovable_Flow_Ground_Water" in Variables_NC or "Recovable_Flow_Surface_Water" in Variables_NC): # Calculate the non recovable return flow to ground and surface water DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Recovable_Flow", Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_RecovableFlow_Return_GW, "Recovable_Flow_Ground_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow_Return_SW, "Recovable_Flow_Surface_Water", "mm/month", 0.01) del DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW ############################ Create CSV 4 ################################# Dir_Basin_CSV, Unit_front = Generate.CSV.Create(Dir_Basin, Simulation, Basin, Startdate_part, Enddate_part, nc_outname) ############################ Create Sheet 4 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV, Unit_front) return()
def Complete_3D_Array(nc_outname, Var, Startdate, Enddate, Additional_Months_front, Additional_Months_tail, Data_Path): from netCDF4 import Dataset import wa.General.raster_conversions as RC # Define startdate and enddate with moving average Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset( months=Additional_Months_front) Enddate_Moving_Average = pd.Timestamp(Enddate) + pd.DateOffset( months=Additional_Months_tail) Startdate_Moving_Average_String = '%d-%02d-%02d' % ( Startdate_Moving_Average.year, Startdate_Moving_Average.month, Startdate_Moving_Average.day) Enddate_Moving_Average_String = '%d-%02d-%02d' % ( Enddate_Moving_Average.year, Enddate_Moving_Average.month, Enddate_Moving_Average.day) # Extract moving average period before Year_front = int(Startdate_Moving_Average.year) filename_front = os.path.join(os.path.dirname(nc_outname), "%d.nc" % Year_front) Enddate_Front = pd.Timestamp(Startdate) - pd.DateOffset(days=1) # Extract inside start and enddate Array_main = RC.Open_nc_array(nc_outname, Var, Startdate, Enddate) if Additional_Months_front > 0: # Extract moving average period before if os.path.exists(filename_front): # Open variables in netcdf fh = Dataset(filename_front) Variables_NC = [var for var in fh.variables] fh.close() if Var in Variables_NC: Array_front = RC.Open_nc_array( filename_front, Var, Startdate_Moving_Average_String, Enddate_Front) else: Array_front = RC.Get3Darray_time_series_monthly( Data_Path, Startdate_Moving_Average_String, Enddate_Front, nc_outname) else: Array_front = RC.Get3Darray_time_series_monthly( Data_Path, Startdate_Moving_Average_String, Enddate_Front, nc_outname) # Merge dataset Array_main = np.vstack([Array_front, Array_main]) if Additional_Months_tail > 0: # Extract moving average period after Year_tail = int(Enddate_Moving_Average.year) filename_tail = os.path.join(os.path.dirname(nc_outname), "%d.nc" % Year_tail) Startdate_tail = pd.Timestamp(Enddate) + pd.DateOffset(days=1) # Extract moving average period after if os.path.exists(filename_tail): # Open variables in netcdf fh = Dataset(filename_tail) Variables_NC = [var for var in fh.variables] fh.close() if Var in Variables_NC: Array_tail = RC.Open_nc_array(filename_tail, Var, Startdate_tail, Enddate_Moving_Average_String) else: Array_tail = RC.Get3Darray_time_series_monthly( Data_Path, Startdate_tail, Enddate_Moving_Average_String, nc_outname) else: Array_tail = RC.Get3Darray_time_series_monthly( Data_Path, Startdate_tail, Enddate_Moving_Average_String, nc_outname) # Merge dataset Array_main = np.vstack([Array_main, Array_tail]) return (Array_main)
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, LAI_Product, NDM_Product, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 2. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used LAI_Product : str Name of the LAI product that will be used NDM_Product : str Name of the NDM product that will be used Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### # import general python modules import os from netCDF4 import Dataset from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Two as Two import wa.Functions.Start as Start import wa.Generator.Sheet2 as Generate ######################### Set General Parameters ############################## # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home) ############## Cut dates into pieces if it is needed ###################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: # Create Start and End date for time chunk Startdate_part = '%d-01-01' %int(year) Enddate_part = '%s-12-31' %int(year) # Create Directory Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) ############################# Download Data ################################### # Open variables in netcdf fh = Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Rainy_Days" in Variables_NC: Data_Path_P_Daily = Start.Download_Data.Precipitation_Daily(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotranspiration" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if not "LAI" in Variables_NC: Data_Path_LAI = Start.Download_Data.LAI(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, LAI_Product) if not "Normalized_Dry_Matter" in Variables_NC: Data_Path_NPP = Start.Download_Data.NPP(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, NDM_Product) Data_Path_GPP = Start.Download_Data.GPP(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, NDM_Product) ########################### Create input data ################################# if not "Rainy_Days" in Variables_NC: # Create Rainy Days based on daily CHIRPS Data_Path_RD = Two.Rainy_Days.Calc_Rainy_Days(Dir_Basin, Data_Path_P_Daily, Startdate_part, Enddate_part) if not "LAI" in Variables_NC: # Create monthly LAI Start.Eightdaily_to_monthly_state.Nearest_Interpolate(Data_Path_LAI, Startdate_part, Enddate_part) if not "Normalized_Dry_Matter" in Variables_NC: # Create NDM based on MOD17 if NDM_Product == 'MOD17': # Create monthly GPP Start.Eightdaily_to_monthly_state.Nearest_Interpolate(Data_Path_GPP, Startdate_part, Enddate_part) Data_Path_NDM = Two.Calc_NDM.NPP_GPP_Based(Dir_Basin, Data_Path_GPP, Data_Path_NPP, Startdate_part, Enddate_part) ###################### Save Data as netCDF files ############################## #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________________Evaporation________________________________ # 2.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #___________________________Normalized Dry Matter__________________________ # 3.) Normalized Dry Matter if not "Normalized_Dry_Matter" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_NDM = RC.Get3Darray_time_series_monthly(Data_Path_NDM, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_NDM, "Normalized_Dry_Matter", "kg_ha", 0.01) del DataCube_NDM #_______________________________Rainy Days_________________________________ if not "Rainy_Days" in Variables_NC: # Get the data of rainy days and save as nc DataCube_RD = RC.Get3Darray_time_series_monthly(Data_Path_RD, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_RD, "Rainy_Days", "amount_of_days", 0.01) del DataCube_RD #_______________________________Leaf Area Index____________________________ if not "LAI" in Variables_NC: # Get the data of leave area index and save as nc DataCube_LAI = RC.Get3Darray_time_series_monthly(Data_Path_LAI, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_LAI, "LAI", "m2-m-2", 0.01) del DataCube_LAI ####################### Calculations Sheet 2 ########################## if not ("Interception" in Variables_NC or "Transpiration" in Variables_NC or "Evaporation" in Variables_NC): DataCube_I, DataCube_T, DataCube_E = Two.SplitET.ITE(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Simulation) DC.Add_NC_Array_Variable(nc_outname, DataCube_I, "Interception", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_T, "Transpiration", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_E, "Evaporation", "mm/month", 0.01) del DataCube_I, DataCube_T, DataCube_E ######################### Create CSV 2 ################################ Dir_Basin_CSV = Generate.CSV.Create(Dir_Basin, Simulation, Basin, Startdate_part, Enddate_part, nc_outname, Example_dataset) ############################ Create Sheet 2 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV) return()
def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction, startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction): # Define a year to get the epsg and geo Startdate_timestamp = pd.Timestamp(startdate) year = Startdate_timestamp.year ############################## Drainage Direction ##################################### # Open Array DEM dir as netCDF if Format_DEM_dir == "NetCDF": file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" % year) DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction") geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info( files_DEM_dir) # Create memory file for reprojection gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example) dataset_example = file_name_DEM_dir = gland # Open Array DEM dir as TIFF if Format_DEM_dir == "TIFF": file_name_DEM_dir = os.path.join(files_DEM_dir, "DIR_HydroShed_-_%s.tif" % resolution) DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir) geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info( file_name_DEM_dir) dataset_example = file_name_DEM_dir # Calculate Area per pixel in m2 import wa.Functions.Start.Area_converter as AC DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir) ################################## DEM ########################################## # Open Array DEM as netCDF if Format_DEM == "NetCDF": file_DEM = os.path.join(files_DEM, "%d.nc" % year) DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation") # Open Array DEM as TIFF if Format_DEM == "TIFF": file_name_DEM = os.path.join(files_DEM, "DEM_HydroShed_m_%s.tif" % resolution) DataCube_DEM = RC.Open_tiff_array(file_name_DEM) ################################ Landuse ########################################## # Open Array Basin as netCDF if Format_Basin == "NetCDF": file_Basin = os.path.join(files_Basin, "%d.nc" % year) DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse") geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Basin, "Landuse") dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg)) destLU = RC.reproject_dataset_example(dest_basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 # Open Array Basin as TIFF if Format_Basin == "TIFF": file_name_Basin = files_Basin destLU = RC.reproject_dataset_example(file_name_Basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 ################################ Surface Runoff ########################################## # Open Array runoff as netCDF if Format_Runoff == "NetCDF": DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff", startdate, enddate) size_Z_example = DataCube_Runoff.shape[0] file_Runoff = os.path.join(files_Runoff, "%d.nc" % year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Runoff, "Surface_Runoff") DataCube_Runoff_CR = np.ones( [size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Runoff_one = DataCube_Runoff[i, :, :] dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out, str(epsg)) dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one, dataset_example, method=4) DataCube_Runoff_CR[i, :, :] = dest_Runoff.GetRasterBand( 1).ReadAsArray() DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999 # Open Array runoff as TIFF if Format_Runoff == "TIFF": Data_Path = '' DataCube_Runoff = RC.Get3Darray_time_series_monthly( files_Runoff, Data_Path, startdate, enddate, Example_data=dataset_example) ################################ Surface Withdrawal ########################################## # Open Array Extraction as netCDF if Format_Extraction == "NetCDF": DataCube_Extraction = RC.Open_ncs_array(files_Extraction, "Surface_Withdrawal", startdate, enddate) size_Z_example = DataCube_Extraction.shape[0] file_Extraction = os.path.join(files_Extraction, "%d.nc" % year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Extraction, "Surface_Withdrawal") DataCube_Extraction_CR = np.ones( [size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Extraction_one = DataCube_Extraction[i, :, :] dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one, geo_out, str(epsg)) dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one, dataset_example, method=4) DataCube_Extraction_CR[i, :, :] = dest_Extraction.GetRasterBand( 1).ReadAsArray() DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999 # Open Array Extraction as TIFF if Format_Extraction == "TIFF": Data_Path = '' DataCube_Extraction = RC.Get3Darray_time_series_monthly( files_Extraction, Data_Path, startdate, enddate, Example_data=dataset_example) ################################ Create input netcdf ########################################## # Save data in one NetCDF file geo_out_example = np.array(geo_out_example) # Latitude and longitude lon_ls = np.arange(size_X_example) * geo_out_example[1] + geo_out_example[ 0] + 0.5 * geo_out_example[1] lat_ls = np.arange(size_Y_example) * geo_out_example[5] + geo_out_example[ 3] - 0.5 * geo_out_example[5] lat_n = len(lat_ls) lon_n = len(lon_ls) # Create NetCDF file nc_file = netCDF4.Dataset(input_nc, 'w') nc_file.set_fill_on() # Create dimensions lat_dim = nc_file.createDimension('latitude', lat_n) lon_dim = nc_file.createDimension('longitude', lon_n) # Create NetCDF variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mapping_name = 'latitude_longitude' crso.projection = epsg_example crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_out_example lat_var = nc_file.createVariable('latitude', 'f8', ('latitude', )) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lat_var.pixel_size = geo_out_example[5] lon_var = nc_file.createVariable('longitude', 'f8', ('longitude', )) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' lon_var.pixel_size = geo_out_example[1] Dates = pd.date_range(startdate, enddate, freq='MS') time_or = np.zeros(len(Dates)) i = 0 for Date in Dates: time_or[i] = Date.toordinal() i += 1 nc_file.createDimension('time', None) timeo = nc_file.createVariable('time', 'f4', ('time', )) timeo.units = 'Monthly' timeo.standard_name = 'time' # Variables demdir_var = nc_file.createVariable('demdir', 'i', ('latitude', 'longitude'), fill_value=-9999) demdir_var.long_name = 'Flow Direction Map' demdir_var.grid_mapping = 'crs' dem_var = nc_file.createVariable('dem', 'f8', ('latitude', 'longitude'), fill_value=-9999) dem_var.long_name = 'Altitude' dem_var.units = 'meters' dem_var.grid_mapping = 'crs' basin_var = nc_file.createVariable('basin', 'i', ('latitude', 'longitude'), fill_value=-9999) basin_var.long_name = 'Altitude' basin_var.units = 'meters' basin_var.grid_mapping = 'crs' area_var = nc_file.createVariable('area', 'f8', ('latitude', 'longitude'), fill_value=-9999) area_var.long_name = 'area in squared meters' area_var.units = 'squared_meters' area_var.grid_mapping = 'crs' runoff_var = nc_file.createVariable('Runoff_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) runoff_var.long_name = 'Runoff' runoff_var.units = 'm3/month' runoff_var.grid_mapping = 'crs' extraction_var = nc_file.createVariable('Extraction_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) extraction_var.long_name = 'Surface water Extraction' extraction_var.units = 'm3/month' extraction_var.grid_mapping = 'crs' # Load data lat_var[:] = lat_ls lon_var[:] = lon_ls timeo[:] = time_or # Static variables demdir_var[:, :] = DataCube_DEM_dir[:, :] dem_var[:, :] = DataCube_DEM[:, :] basin_var[:, :] = DataCube_Basin[:, :] area_var[:, :] = DataCube_Area[:, :] for i in range(len(Dates)): runoff_var[i, :, :] = DataCube_Runoff_CR[i, :, :] for i in range(len(Dates)): extraction_var[i, :, :] = DataCube_Extraction_CR[i, :, :] # Close file nc_file.close() return ()
def Calculate(Basin, P_Product, ET_Product, Moving_Averaging_Length, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 4. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used Moving_Averiging_Length, int Defines the length of the moving average Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Four as Four import wa.Functions.Start as Start import wa.Generator.Sheet4 as Generate ######################### Set General Parameters ############################## # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) if not os.path.exists(Dir_Basin): os.makedirs(Dir_Basin) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin) #Set Startdate and Enddate for moving average Additional_Months = (Moving_Averaging_Length - 1) / 2 Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset( months=Additional_Months) Enddate_Moving_Average = pd.Timestamp(Enddate) + pd.DateOffset( months=Additional_Months) Startdate_Moving_Average_String = '%d-%02d-%02d' % ( Startdate_Moving_Average.year, Startdate_Moving_Average.month, Startdate_Moving_Average.day) Enddate_Moving_Average_String = '%d-%02d-%02d' % ( Enddate_Moving_Average.year, Enddate_Moving_Average.month, Enddate_Moving_Average.day) ############################# Download Data ################################### # Download data Data_Path_P = Start.Download_Data.Precipitation( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_Moving_Average_String, P_Product, Daily='n') Data_Path_ET = Start.Download_Data.Evapotranspiration( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate, Enddate, ET_Product) Data_Path_ETref = Start.Download_Data.ETreference( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_Moving_Average_String) Data_Path_GWF = Start.Download_Data.GWF( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']]) Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly') ###################### Save Data as netCDF files ############################## #___________________________________Land Use_______________________________ # Get the data of LU and save as nc, This dataset is also used as reference for others LUdest = gdal.Open(Example_dataset) DataCube_LU = LUdest.GetRasterBand(1).ReadAsArray() Name_NC_LU = DC.Create_NC_name('LU', Simulation, Dir_Basin, 4) if not os.path.exists(Name_NC_LU): DC.Save_as_NC(Name_NC_LU, DataCube_LU, 'LU', Example_dataset) LUdest = None del DataCube_LU #______________________________Precipitation_______________________________ # Define info for the nc files info = [ 'monthly', 'mm', ''.join([ Startdate_Moving_Average_String[5:7], Startdate_Moving_Average_String[0:4] ]), ''.join([ Enddate_Moving_Average_String[5:7], Enddate_Moving_Average_String[0:4] ]) ] # Precipitation data Name_NC_P = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 4, info) if not os.path.exists(Name_NC_P): # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate_Moving_Average_String, Enddate_Moving_Average_String, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_P, DataCube_Prec, 'Prec', Example_dataset, Startdate_Moving_Average_String, Enddate_Moving_Average_String, 'monthly', 0.01) del DataCube_Prec #_______________________Reference Evaporation______________________________ # Reference Evapotranspiration data Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 4, info) if not os.path.exists(Name_NC_ETref): # Get the data of Evaporation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ETref, Startdate_Moving_Average_String, Enddate_Moving_Average_String, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', Example_dataset, Startdate_Moving_Average_String, Enddate_Moving_Average_String, 'monthly', 0.01) del DataCube_ETref #_______________________________Evaporation________________________________ info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Evapotranspiration data Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 4, info) if not os.path.exists(Name_NC_ET): # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET #_____________________________________GWF__________________________________ # GWF data Name_NC_GWF = DC.Create_NC_name('GWF_Fraction', Simulation, Dir_Basin, 4) if not os.path.exists(Name_NC_GWF): # Get the data of GWF, reproject and save as nc GWF_Filepath = os.path.join(Dir_Basin, Data_Path_GWF, "Gray_Water_Footprint_Fraction.tif") dest_GWF = RC.reproject_dataset_example(GWF_Filepath, Example_dataset, method=1) DataCube_GWF = dest_GWF.GetRasterBand(1).ReadAsArray() DC.Save_as_NC(Name_NC_GWF, DataCube_GWF, 'GWF', Example_dataset, Scaling_factor=0.01) del DataCube_GWF ####################### Calculations Sheet 4 ############################## #____________ Evapotranspiration data split in ETblue and ETgreen ____________ Name_NC_ETgreen = DC.Create_NC_name('ETgreen', Simulation, Dir_Basin, 4, info) Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_ETgreen) or os.path.exists(Name_NC_ETblue)): # Calculate Blue and Green ET DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green( Name_NC_ET, Name_NC_P, Name_NC_ETref, Startdate, Enddate, Additional_Months) # Save the ETblue and ETgreen data as NetCDF files DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue, 'ETblue', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_ETgreen, DataCube_ETgreen, 'ETgreen', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ETblue, DataCube_ETgreen #____________ Calculate non-consumend and Total supply maps by using fractions and consumed maps (blue ET) ____________ Name_NC_Total_Supply = DC.Create_NC_name('TotSup', Simulation, Dir_Basin, 4, info) Name_NC_Non_Consumed = DC.Create_NC_name('NonCon', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_Total_Supply) or os.path.exists(Name_NC_Non_Consumed)): # Do the calculations DataCube_Total_Supply, DataCube_Non_Consumed = Four.Total_Supply.Fraction_Based( Name_NC_ETblue, Name_NC_LU, Startdate, Enddate) # Save the Total Supply and non consumed data as NetCDF files DC.Save_as_NC(Name_NC_Total_Supply, DataCube_Total_Supply, 'TotSup', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_Non_Consumed, DataCube_Non_Consumed, 'NonCon', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Total_Supply, DataCube_Non_Consumed #____________ Apply fractions over total supply to calculate gw and sw supply ____________ Name_NC_Total_Supply_SW = DC.Create_NC_name('TotSupSW', Simulation, Dir_Basin, 4, info) Name_NC_Total_Supply_GW = DC.Create_NC_name('TotSupGW', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_Total_Supply_SW) or os.path.exists(Name_NC_Total_Supply_GW)): # Do the calculations DataCube_Total_Supply_SW, DataCube_Total_Supply_GW = Four.SplitGW_SW_Supply.Fraction_Based( Name_NC_Total_Supply, Name_NC_LU, Startdate, Enddate) # Save the Total Supply surface water and Total Supply ground water data as NetCDF files DC.Save_as_NC(Name_NC_Total_Supply_SW, DataCube_Total_Supply_SW, 'TotSupSW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_Total_Supply_GW, DataCube_Total_Supply_GW, 'TotSupGW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Total_Supply_SW, DataCube_Total_Supply_GW #____________ Apply gray water footprint fractions to calculated non recoverable flow based on the non consumed flow ____________ Name_NC_NonRecovableFlow = DC.Create_NC_name('NonRecov', Simulation, Dir_Basin, 4, info) Name_NC_RecovableFlow = DC.Create_NC_name('Recov', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_NonRecovableFlow) or os.path.exists(Name_NC_RecovableFlow)): # Calculate the non recovable flow and recovable flow by using Grey Water Footprint values DataCube_NonRecovableFlow, Datacube_RecovableFlow = Four.SplitNonConsumed_NonRecov.GWF_Based( Name_NC_Non_Consumed, Name_NC_GWF, Name_NC_LU, Startdate, Enddate) # Get the data of Evaporation and save as nc DC.Save_as_NC(Name_NC_NonRecovableFlow, DataCube_NonRecovableFlow, 'NonRecov', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_RecovableFlow, Datacube_RecovableFlow, 'Recov', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_NonRecovableFlow, Datacube_RecovableFlow #____________Apply fractions to calculate the non recovarable SW/GW and recovarable SW/GW ____________ # 1. Non recovarable flow Name_NC_NonRecovableFlow_Return_GW = DC.Create_NC_name( 'NonRecov_Return_GW', Simulation, Dir_Basin, 4, info) Name_NC_NonRecovableFlow_Return_SW = DC.Create_NC_name( 'NonRecov_Return_SW', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_NonRecovableFlow_Return_GW) or os.path.exists(Name_NC_NonRecovableFlow_Return_SW)): # Calculate the non recovable return flow to ground and surface water DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based( Name_NC_NonRecovableFlow, Name_NC_LU, Startdate, Enddate) # Get the data of Evaporation and save as nc DC.Save_as_NC(Name_NC_NonRecovableFlow_Return_GW, DataCube_NonRecovableFlow_Return_GW, 'NonRecovReturnGW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_NonRecovableFlow_Return_SW, Datacube_NonRecovableFlow_Return_SW, 'NonRecovReturnSW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW # 2. Recovarable flow Name_NC_RecovableFlow_Return_GW = DC.Create_NC_name( 'Recov_Return_GW', Simulation, Dir_Basin, 4, info) Name_NC_RecovableFlow_Return_SW = DC.Create_NC_name( 'Recov_Return_SW', Simulation, Dir_Basin, 4, info) if not (os.path.exists(Name_NC_RecovableFlow_Return_GW) or os.path.exists(Name_NC_RecovableFlow_Return_SW)): # Calculate the non recovable return flow to ground and surface water DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based( Name_NC_RecovableFlow, Name_NC_LU, Startdate, Enddate) # Get the data of Evaporation and save as nc DC.Save_as_NC(Name_NC_RecovableFlow_Return_GW, DataCube_RecovableFlow_Return_GW, 'NonRecovReturnGW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) DC.Save_as_NC(Name_NC_RecovableFlow_Return_SW, Datacube_RecovableFlow_Return_SW, 'NonRecovReturnSW', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW ############################ Create CSV 4 ################################# Dir_Basin_CSV, Unit_front = Generate.CSV.Create( Dir_Basin, Simulation, Basin, Startdate, Enddate, Name_NC_LU, Name_NC_Total_Supply_GW, Name_NC_Total_Supply_SW, Name_NC_Non_Consumed, Name_NC_ETblue, Name_NC_RecovableFlow_Return_GW, Name_NC_RecovableFlow_Return_SW, Name_NC_NonRecovableFlow_Return_GW, Name_NC_NonRecovableFlow_Return_SW) ############################ Create Sheet 4 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV, Unit_front) return ()