예제 #1
0
def livestock_feed(output_folder, lu_fh, ndm_fhs, feed_dict, live_feed, cattle_fh, fraction_fhs, ndmdates):
    """
    Calculate natural livestock feed production

    INPUTS
    ----------
    lu_fh : str
        filehandle for land use map
    ndm_fhs: nd array
        array of filehandles of NDM maps
    ndm_dates: nd array
        array of dates for NDM maps
    feed_dict: dict
        dictionnary 'pasture class':[list of LULC]
    feed_pct: dict
        dictionnary 'pasture class':[percent available as feed]
    cattle_fh : str
        filehandle for cattle map
    """
    Data_Path_Feed = "Feed"
    out_folder = os.path.join(output_folder, Data_Path_Feed)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)

    area_ha = becgis.MapPixelAreakm(lu_fh) * 100
    LULC = RC.Open_tiff_array(lu_fh)
  #  cattle = RC.Open_tiff_array(cattle_fh)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(lu_fh)

    f_pct = np.zeros(LULC.shape)
    for lu_type in feed_dict.keys():
        classes = feed_dict[lu_type]
        mask = np.logical_or.reduce([LULC == value for value in classes])
        f_pct[mask] = live_feed[lu_type]
    feed_fhs_landscape = []
    feed_fhs_incremental = []
    for d in range(len(ndm_fhs)):
        ndm_fh = ndm_fhs[d]
        fraction_fh = fraction_fhs[d]
        date1 = ndmdates[d]
        year = '%d' %date1.year
        month = '%02d' %date1.month

        yield_fract = RC.Open_tiff_array(fraction_fh)

        out_fh_l = out_folder+'\\feed_prod_landscape_%s_%s.tif' %(year, month)
        out_fh_i = out_folder+'\\feed_prod_incremental_%s_%s.tif' %(year, month)
#        out_fh2 = out_folder+'\\Feed_prod_pH_%s_%s.tif' %(year, month)
        NDM = becgis.OpenAsArray(ndm_fh, nan_values=True)
        NDM_feed = NDM * f_pct
        NDM_feed_incremental = NDM_feed * yield_fract * area_ha/1e6
        NDM_feed_landscape = (NDM_feed *(1-yield_fract)) * area_ha/1e6
        DC.Save_as_tiff(out_fh_l, NDM_feed_landscape, geo_out)
        DC.Save_as_tiff(out_fh_i, NDM_feed_incremental, geo_out)
#        NDM_feed_perHead = NDM_feed / cattle
#        DC.Save_as_tiff(out_fh2, NDM_feed, geo_out)
        feed_fhs_landscape.append(out_fh_l)
        feed_fhs_incremental.append(out_fh_i)
    return feed_fhs_landscape, feed_fhs_incremental
예제 #2
0
def lu_type_average(data_fh, lu_fh, lu_dict):
    LULC = RC.Open_tiff_array(lu_fh)
    in_data = RC.Open_tiff_array(data_fh)
    out_data = {}
    for lu_class in lu_dict.keys():
        mask = [LULC == value for value in lu_dict[lu_class]]
        mask = (np.sum(mask, axis=0)).astype(bool)
        out_data[lu_class] = np.nanmean(in_data[mask])
    return out_data
예제 #3
0
def fuel_wood(output_folder, lu_fh, ndm_fhs, fraction_fhs, ndmdates):
    """
    Calculate natural livestock feed production

    INPUTS
    ----------
    lu_fh : str
        filehandle for land use map
    ndm_fhs: nd array
        array of filehandles of NDM maps
    abv_grnd_biomass_ratio: dict
        dictionnary 'LULC':[above ground biomass]
    """
    Data_Path_Fuel = "Fuel"
    out_folder = os.path.join(output_folder, Data_Path_Fuel)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)

    area_ha = becgis.MapPixelAreakm(lu_fh) * 100
    LULC = RC.Open_tiff_array(lu_fh)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(lu_fh)

    fuel_classes = [1, 8, 9, 10, 11, 12, 13]
    fuel_mask = np.zeros(LULC.shape)
    for fc in fuel_classes:
        fuel_mask[np.where(LULC == fc)] = 1

    fuel_fhs_landscape = []
    fuel_fhs_incremental = []

    for d in range(len(ndm_fhs)):
        ndm_fh = ndm_fhs[d]
        fraction_fh = fraction_fhs[d]
        yield_fract = RC.Open_tiff_array(fraction_fh)
        date1 = ndmdates[d]
        year = '%d' %date1.year
        month = '%02d' %date1.month
#        year = ndm_fh[-14:-10]
#        month = ndm_fh[-9:-7]
        out_fh_l = out_folder+'\\fuel_prod_landscape_%s_%s.tif' %(year, month)
        out_fh_i = out_folder+'\\fuel_prod_incremental_%s_%s.tif' %(year, month)
        NDM = becgis.OpenAsArray(ndm_fh, nan_values=True)

        NDM_fuel_incremental = NDM * .05 * fuel_mask * yield_fract * area_ha/1e6
        NDM_fuel_landscape = NDM  * .05 * fuel_mask *(1-yield_fract) * area_ha/1e6
        DC.Save_as_tiff(out_fh_i, NDM_fuel_incremental, geo_out)
        DC.Save_as_tiff(out_fh_l, NDM_fuel_landscape, geo_out)
        fuel_fhs_landscape.append(out_fh_l)
        fuel_fhs_incremental.append(out_fh_i)

    return fuel_fhs_landscape, fuel_fhs_incremental
예제 #4
0
def Clip_Dataset(local_filename, Filename_out, latlim, lonlim):

    import wa.General.raster_conversions as RC

    # Open Dataset
    HiHydroSoil_Array = RC.Open_tiff_array(local_filename)

    # Define area
    XID = [
        int(np.floor((180 + lonlim[0]) / 0.00833333)),
        int(np.ceil((180 + lonlim[1]) / 0.00833333))
    ]
    YID = [
        int(np.ceil((90 - latlim[1]) / 0.00833333)),
        int(np.floor((90 - latlim[0]) / 0.00833333))
    ]

    # Define Georeference
    geo = tuple([
        -180 + 0.00833333 * XID[0], 0.00833333, 0, 90 - 0.00833333 * YID[0], 0,
        -0.00833333
    ])

    # Clip Array
    HiHydroSoil_Array_clipped = HiHydroSoil_Array[YID[0]:YID[1], XID[0]:XID[1]]

    # Save tiff file
    DC.Save_as_tiff(Filename_out, HiHydroSoil_Array_clipped, geo, "WGS84")
예제 #5
0
def Download_ALEXI_from_WA_FTP(local_filename, DirFile, filename, lonlim,
                               latlim, yID, xID, TimeStep):
    """
    This function retrieves ALEXI data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ALEXI developers.

    Keyword arguments:
	local_filename -- name of the temporary file which contains global ALEXI data
    DirFile -- name of the end file with the weekly ALEXI data
    filename -- name of the end file
    lonlim -- [ymin, ymax] (values must be between -60 and 70)
    latlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='FTP_WA')
    ftpserver = "ftp.wateraccounting.unesco-ihe.org"

    # Download data from FTP
    ftp = FTP(ftpserver)
    ftp.login(username, password)
    if TimeStep is "weekly":
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/"
    if TimeStep is "daily":
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World_05182018/"
    ftp.cwd(directory)
    lf = open(local_filename, "wb")
    ftp.retrbinary("RETR " + filename, lf.write)
    lf.close()

    if TimeStep is "weekly":

        # Open global ALEXI data
        dataset = RC.Open_tiff_array(local_filename)

        # Clip extend out of world data
        data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
        data[data < 0] = -9999

    if TimeStep is "daily":

        DC.Extract_Data_gz(local_filename, os.path.splitext(local_filename)[0])

        raw_data = np.fromfile(os.path.splitext(local_filename)[0],
                               dtype="<f4")
        dataset = np.flipud(np.resize(raw_data, [3000, 7200]))
        data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
        data[data < 0] = -9999

    # make geotiff file
    geo = [lonlim[0], 0.05, 0, latlim[1], 0, -0.05]
    DC.Save_as_tiff(name=DirFile, data=data, geo=geo, projection="WGS84")
    return
예제 #6
0
def split_yield(output_folder, p_fhs, et_blue_fhs, et_green_fhs, ab=(1.0, 1.0)):
    Data_Path_split = "split_y"
    out_folder = os.path.join(output_folder, Data_Path_split)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)
    sp_yield_fhs = []
    geo_out, proj, size_X, size_Y = RC.Open_array_info(p_fhs[0])
    for m in range(len(p_fhs)):
        out_fh = out_folder+'\\split_yield'+et_blue_fhs[m][-12:]
        P = RC.Open_tiff_array(p_fhs[m])
        ETBLUE = RC.Open_tiff_array(et_blue_fhs[m])
        ETGREEN = RC.Open_tiff_array(et_green_fhs[m])
        etbfraction = ETBLUE / (ETBLUE + ETGREEN)
        pfraction = P / np.nanmax(P)
        fraction = sh3.split_Yield(pfraction, etbfraction, ab[0], ab[1])
        DC.Save_as_tiff(out_fh, fraction, geo_out)
        sp_yield_fhs.append(out_fh)
    return sp_yield_fhs
예제 #7
0
def lu_type_sum(data_fh, lu_fh, lu_dict, convert=None):
    LULC = RC.Open_tiff_array(lu_fh)
    in_data = becgis.OpenAsArray(data_fh, nan_values=True)
#    in_data = RC.Open_tiff_array(data_fh)
    if convert == 'mm_to_km3':
        AREA = becgis.MapPixelAreakm(data_fh)
        in_data *= AREA / 1e6
    out_data = {}
    for lu_class in lu_dict.keys():
        mask = [LULC == value for value in lu_dict[lu_class]]
        mask = (np.sum(mask, axis=0)).astype(bool)
        out_data[lu_class] = np.nansum(in_data[mask])
    return out_data
예제 #8
0
def Download_ALEXI_from_WA_FTP(local_filename, DirFile, filename, lonlim,
                               latlim, yID, xID):
    """
    This function retrieves ALEXI data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.
				
    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ALEXI developers.

    Keyword arguments:
	local_filename -- name of the temporary file which contains global ALEXI data			
    DirFile -- name of the end file with the weekly ALEXI data
    filename -- name of the end file
    lonlim -- [ymin, ymax] (values must be between -60 and 70)
    latlim -- [xmin, xmax] (values must be between -180 and 180)			
    """

    try:

        # Collect account and FTP information
        username, password = WebAccounts.Accounts(Type='FTP_WA')
        ftpserver = "ftp.wateraccounting.unesco-ihe.org"

        # Download data from FTP
        ftp = FTP(ftpserver)
        ftp.login(username, password)
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/"
        ftp.cwd(directory)
        lf = open(local_filename, "wb")
        ftp.retrbinary("RETR " + filename, lf.write)
        lf.close()

        # Open global ALEXI data
        dataset = RC.Open_tiff_array(local_filename)

        # Clip extend out of world data
        data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
        data[data < 0] = -9999

        # make geotiff file
        geo = [lonlim[0], 0.05, 0, latlim[1], 0, -0.05]
        DC.Save_as_tiff(name=DirFile, data=data, geo=geo, projection="WGS84")

        # delete old tif file
        os.remove(local_filename)

    except:
        print "file not exists"

    return
예제 #9
0
def DownloadData(output_folder, latlim, lonlim, parameter, resolution):
    """
    This function downloads DEM data from HydroSHED

    Keyword arguments:
    output_folder -- directory of the result
	latlim -- [ymin, ymax] (values must be between -50 and 50)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    Resample -- 1 = The data will be resampled to 0.001 degree spatial
                    resolution
             -- 0 = The data will have the same pixel size as the data obtained
                    from the internet
    """
    # Define parameter depedent variables
    if parameter == "dir_3s":
        para_name = "DIR"
        unit = "-"
        resolution = '3s'
        parameter = 'dir'

    if parameter == "dem_3s":
        para_name = "DEM"
        unit = "m"
        resolution = '3s'
        parameter = 'dem'

    if parameter == "dir_15s":
        para_name = "DIR"
        unit = "-"
        resolution = '15s'
        parameter = 'dir'

    if parameter == "dem_15s":
        para_name = "DEM"
        unit = "m"
        resolution = '15s'
        parameter = 'dem'

   # converts the latlim and lonlim into names of the tiles which must be
    # downloaded
    if resolution == '3s':

        name, rangeLon, rangeLat = Find_Document_Names(latlim, lonlim, parameter)


        # Memory for the map x and y shape (starts with zero)
        size_X_tot = 0
        size_Y_tot = 0

    if resolution == '15s':
       name = Find_Document_names_15s(latlim, lonlim, parameter, resolution)

    nameResults = []
    # Create a temporary folder for processing
    output_folder_trash = os.path.join(output_folder, "Temp")
    if not os.path.exists(output_folder_trash):
        os.makedirs(output_folder_trash)

    # Download, extract, and converts all the files to tiff files
    for nameFile in name:

        try:
            # Download the data from
            # http://earlywarning.usgs.gov/hydrodata/
            output_file, file_name = Download_Data(nameFile,
                                                   output_folder_trash, parameter, para_name,resolution)

            # extract zip data
            DC.Extract_Data(output_file, output_folder_trash)

            # Converts the data with a adf extention to a tiff extension.
            # The input is the file name and in which directory the data must be stored
            file_name_tiff = file_name.split('.')[0] + '_trans_temporary.tif'
            file_name_extract = file_name.split('_')[0:3]
            if resolution == '3s':
                file_name_extract2 = file_name_extract[0]+'_'+file_name_extract[1]

            if resolution == '15s':
                file_name_extract2 = file_name_extract[0]+'_'+file_name_extract[1]+'_15s'

            input_adf = os.path.join(output_folder_trash, file_name_extract2,
                                    file_name_extract2, 'hdr.adf')
            output_tiff = os.path.join(output_folder_trash, file_name_tiff)

            # convert data from adf to a tiff file
            output_tiff = DC.Convert_adf_to_tiff(input_adf, output_tiff)

            geo_out, proj, size_X, size_Y = RC.Open_array_info(output_tiff)
            if int(size_X) != int(6000) or int(size_Y) != int(6000):
                data = np.ones((6000, 6000)) * -9999

                # Create the latitude bound
                Vfile = str(nameFile)[1:3]
                SignV = str(nameFile)[0]
                SignVer = 1
                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer)*int(Vfile)

              # Create the longitude bound
                Hfile = str(nameFile)[4:7]
                SignH = str(nameFile)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                Expected_X_min = Bound1
                Expected_Y_max = Bound2 + 5

                Xid_start = int(np.round((geo_out[0] - Expected_X_min)/geo_out[1]))
                Xid_end = int(np.round(((geo_out[0] + size_X * geo_out[1]) - Expected_X_min)/geo_out[1]))
                Yid_start = int(np.round((Expected_Y_max - geo_out[3])/(-geo_out[5])))
                Yid_end = int(np.round((Expected_Y_max - (geo_out[3] + (size_Y * geo_out[5])))/(-geo_out[5])))

                data[Yid_start:Yid_end,Xid_start:Xid_end] = RC.Open_tiff_array(output_tiff)
                if np.max(data)==255:
                    data[data==255] = -9999
                data[data<-9999] = -9999

                geo_in = [Bound1, 0.00083333333333333, 0.0, int(Bound2 + 5),
                          0.0, -0.0008333333333333333333]

                # save chunk as tiff file
                DC.Save_as_tiff(name=output_tiff, data=data, geo=geo_in,
                             projection="WGS84")

        except:

            if resolution == '3s':
                # If tile not exist create a replacing zero tile (sea tiles)
                output = nameFile.split('.')[0] + "_trans_temporary.tif"
                output_tiff = os.path.join(output_folder_trash, output)
                file_name = nameFile
                data = np.ones((6000, 6000)) * -9999
                data = data.astype(np.float32)

                # Create the latitude bound
                Vfile = str(file_name)[1:3]
                SignV = str(file_name)[0]
                SignVer = 1
                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer)*int(Vfile)

                # Create the longitude bound
                Hfile = str(file_name)[4:7]
                SignH = str(file_name)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                # Geospatial data for the tile
                geo_in = [Bound1, 0.00083333333333333, 0.0, int(Bound2 + 5),
                          0.0, -0.0008333333333333333333]

                # save chunk as tiff file
                DC.Save_as_tiff(name=output_tiff, data=data, geo=geo_in,
                             projection="WGS84")

            if resolution == '15s':

                print 'no 15s data is in dataset'

        if resolution =='3s':

            # clip data
            Data, Geo_data = RC.clip_data(output_tiff, latlim, lonlim)
            size_Y_out = int(np.shape(Data)[0])
            size_X_out = int(np.shape(Data)[1])

            # Total size of the product so far
            size_Y_tot = int(size_Y_tot + size_Y_out)
            size_X_tot = int(size_X_tot + size_X_out)

            if nameFile is name[0]:
                Geo_x_end = Geo_data[0]
                Geo_y_end = Geo_data[3]
            else:
                Geo_x_end = np.min([Geo_x_end,Geo_data[0]])
                Geo_y_end = np.max([Geo_y_end,Geo_data[3]])

            # create name for chunk
            FileNameEnd = "%s_temporary.tif" % (nameFile)
            nameForEnd = os.path.join(output_folder_trash, FileNameEnd)
            nameResults.append(str(nameForEnd))

            # save chunk as tiff file
            DC.Save_as_tiff(name=nameForEnd, data=Data, geo=Geo_data,
                          projection="WGS84")

    if resolution =='3s':
        #size_X_end = int(size_X_tot) #!
        #size_Y_end = int(size_Y_tot) #!

        size_X_end = int(size_X_tot/len(rangeLat)) + 1 #!
        size_Y_end = int(size_Y_tot/len(rangeLon)) + 1 #!

        # Define the georeference of the end matrix
        geo_out = [Geo_x_end, Geo_data[1], 0, Geo_y_end, 0, Geo_data[5]]

        latlim_out = [geo_out[3] + geo_out[5] * size_Y_end, geo_out[3]]
        lonlim_out = [geo_out[0], geo_out[0] + geo_out[1] * size_X_end]


        # merge chunk together resulting in 1 tiff map
        datasetTot = Merge_DEM(latlim_out, lonlim_out, nameResults, size_Y_end,
                                    size_X_end)

        datasetTot[datasetTot<-9999] = -9999


    if resolution =='15s':
        output_file_merged = os.path.join(output_folder_trash,'merged.tif')
        datasetTot, geo_out = Merge_DEM_15s(output_folder_trash, output_file_merged,latlim, lonlim)

    # name of the end result
    output_DEM_name = "%s_HydroShed_%s_%s.tif" %(para_name,unit,resolution)

    Save_name = os.path.join(output_folder, output_DEM_name)

    # Make geotiff file
    DC.Save_as_tiff(name=Save_name, data=datasetTot, geo=geo_out, projection="WGS84")
    os.chdir(output_folder)

    # Delete the temporary folder
    shutil.rmtree(output_folder_trash)
예제 #10
0
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 19 10:09:38 2017

@author: tih
"""

Tfile = r"J:\Tyler\Input\Meteo\daily\avgsurft_inst\mean\T_GLDAS-NOAH_C_daily_2016.06.15.tif"
Pfile = r"J:\Tyler\Input\Meteo\daily\psurf_f_inst\mean\P_GLDAS-NOAH_kpa_daily_2016.06.15.tif"
Hfile = r"J:\Tyler\Input\Meteo\daily\qair_f_inst\mean\Hum_GLDAS-NOAH_kg-kg_daily_2016.06.15.tif"
Outfilename = r"J:\Tyler\Input\Meteo\daily\Hum_Calculated\Humidity_percentage_Calculated_daily.tif"

import gdal
import os
import wa.General.raster_conversions as RC
import wa.General.data_conversions as DC
import numpy as np

geo_out, proj, size_X, size_Y = RC.Open_array_info(Tfile)
Tdata = RC.Open_tiff_array(Tfile)
Tdata[Tdata < -900] = np.nan
Pdata = RC.Open_tiff_array(Pfile)
Hdata = RC.Open_tiff_array(Hfile)

Esdata = 0.6108 * np.exp((17.27 * Tdata) / (Tdata + 237.3))
HumData = np.minimum((1.6077717 * Hdata * Pdata / Esdata), 1) * 100

DC.Save_as_tiff(Outfilename, HumData, geo_out, "WGS84")
예제 #11
0
def CollectLANDSAF(SourceLANDSAF, Dir, Startdate, Enddate, latlim, lonlim):
    """
    This function collects and clip LANDSAF data
				
    Keyword arguments:
    SourceLANDSAF -- 'C:/'  path to the LANDSAF source data (The directory includes SIS and SID)
    Dir -- 'C:/' path to the WA map
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -60 and 60)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Make an array of the days of which the ET is taken
    Dates = pd.date_range(Startdate, Enddate, freq='D')

    # make directories
    SISdir = os.path.join(Dir, 'Landsaf_Clipped', 'SIS')
    if os.path.exists(SISdir) is False:
        os.makedirs(SISdir)

    SIDdir = os.path.join(Dir, 'Landsaf_Clipped', 'SID')
    if os.path.exists(SIDdir) is False:
        os.makedirs(SIDdir)

    ShortwaveBasin(SourceLANDSAF,
                   Dir,
                   latlim,
                   lonlim,
                   Dates=[Startdate, Enddate])
    DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                              'DEM_HydroShed_m_3s.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(DEMmap_str)

    # Open DEM map
    demmap = RC.Open_tiff_array(DEMmap_str)
    demmap[demmap < 0] = 0

    # make lat and lon arrays)
    dlat = geo_out[5]
    dlon = geo_out[1]
    lat = geo_out[3] + (np.arange(size_Y) + 0.5) * dlat
    lon = geo_out[0] + (np.arange(size_X) + 0.5) * dlon

    for date in Dates:
        # day of year
        day = date.dayofyear
        Horizontal, Sloping, sinb, sinb_hor, fi, slope, ID = SlopeInfluence(
            demmap, lat, lon, day)

        SIDname = os.path.join(
            SIDdir, 'SAF_SID_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')
        SISname = os.path.join(
            SISdir, 'SAF_SIS_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')

        #PREPARE SID MAPS
        SIDdest = RC.reproject_dataset_example(SIDname, DEMmap_str, method=3)
        SIDdata = SIDdest.GetRasterBand(1).ReadAsArray()

        #PREPARE SIS MAPS
        SISdest = RC.reproject_dataset_example(SISname, DEMmap_str, method=3)
        SISdata = SISdest.GetRasterBand(1).ReadAsArray()

        # Calculate ShortWave net
        Short_Wave_Net = SIDdata * (Sloping /
                                    Horizontal) + SISdata * 86400 / 1e6

        # Calculate ShortWave Clear
        Short_Wave = Sloping
        Short_Wave_Clear = Short_Wave * (0.75 + demmap * 2 * 10**-5)

        # make directories
        PathClear = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Clear_Sky')
        if os.path.exists(PathClear) is False:
            os.makedirs(PathClear)

        PathNet = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Net')
        if os.path.exists(PathNet) is False:
            os.makedirs(PathNet)

        # name Shortwave Clear and Net
        nameFileNet = 'ShortWave_Net_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameNet = os.path.join(PathNet, nameFileNet)

        nameFileClear = 'ShortWave_Clear_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameClear = os.path.join(PathClear, nameFileClear)

        # Save net and clear short wave radiation
        DC.Save_as_tiff(nameNet, Short_Wave_Net, geo_out, proj)
        DC.Save_as_tiff(nameClear, Short_Wave_Clear, geo_out, proj)
    return
예제 #12
0
def Calc_Rainy_Days(Dir_Basin, Data_Path_P, Startdate, Enddate):
    """
    This functions calculates the amount of rainy days based on daily precipitation data.

    Parameters
    ----------
    Dir_Basin : str
        Path to all the output data of the Basin
    Data_Path_P : str
        Path from the Dir_Basin to the daily rainfall data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'    
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd' 

    Returns
    -------
    Data_Path_RD : str
        Path from the Dir_Basin to the rainy days data

    """
    # import WA+ modules
    import wa.General.data_conversions as DC
    import wa.General.raster_conversions as RC

    # Create an output directory to store the rainy days tiffs
    Data_Path_RD = 'Rainy_Days'
    Dir_RD = os.path.join(Dir_Basin, Data_Path_RD)
    if not os.path.exists(Dir_RD):
        os.mkdir(Dir_RD)

    # Define the dates that must be created
    Dates = pd.date_range(Startdate, Enddate, freq='MS')

    # Set working directory to the rainfall folder
    Dir_path_Prec = os.path.join(Dir_Basin, Data_Path_P)
    os.chdir(Dir_path_Prec)

    # Open all the daily data and store the data in a 3D array
    for Date in Dates:
        # Define the year and month and amount of days in month
        year = Date.year
        month = Date.month
        daysinmonth = calendar.monthrange(year, month)[1]

        # Set the third (time) dimension of array starting at 0
        i = 0

        # Find all files of that month
        files = glob.glob('*daily_%d.%02d.*.tif' % (year, month))

        # Check if the amount of files corresponds with the amount of days in month
        if len(files) is not daysinmonth:
            print 'ERROR: Not all Rainfall days for month %d and year %d are downloaded' % (
                month, year)

        # Loop over the days and store data in raster
        for File in files:
            dir_file = os.path.join(Dir_path_Prec, File)

            # Get array information and create empty numpy array for daily rainfall when looping the first file
            if File == files[0]:

                # Open geolocation info and define projection
                geo_out, proj, size_X, size_Y = RC.Open_array_info(dir_file)
                if int(proj.split('"')[-2]) == 4326:
                    proj = "WGS84"

                # Create empty array for the whole month
                P_Daily = np.zeros([daysinmonth, size_Y, size_X])

            # Open data and put the data in 3D array
            Data = RC.Open_tiff_array(dir_file)

            # Remove the weird numbers
            Data[Data < 0] = 0

            # Add the precipitation to the monthly cube
            P_Daily[i, :, :] = Data
            i += 1

        # Define a rainy day
        P_Daily[P_Daily > 0.201] = 1
        P_Daily[P_Daily != 1] = 0

        # Sum the amount of rainy days
        RD_one_month = np.nansum(P_Daily, 0)

        # Define output name
        Outname = os.path.join(
            Dir_RD,
            'Rainy_Days_NumOfDays_monthly_%d.%02d.01.tif' % (year, month))

        # Save tiff file
        DC.Save_as_tiff(Outname, RD_one_month, geo_out, proj)

    return (Data_Path_RD)
예제 #13
0
def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction,
         startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM,
         Format_Basin, Format_Runoff, Format_Extraction):

    # Define a year to get the epsg and geo
    Startdate_timestamp = pd.Timestamp(startdate)
    year = Startdate_timestamp.year

    ############################## Drainage Direction #####################################

    # Open Array DEM dir as netCDF
    if Format_DEM_dir == "NetCDF":
        file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" % year)
        DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction")
        geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(
            files_DEM_dir)

        # Create memory file for reprojection
        gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example)
        dataset_example = file_name_DEM_dir = gland

    # Open Array DEM dir as TIFF
    if Format_DEM_dir == "TIFF":
        file_name_DEM_dir = os.path.join(files_DEM_dir,
                                         "DIR_HydroShed_-_%s.tif" % resolution)
        DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir)
        geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info(
            file_name_DEM_dir)
        dataset_example = file_name_DEM_dir

    # Calculate Area per pixel in m2
    import wa.Functions.Start.Area_converter as AC
    DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir)

    ################################## DEM ##########################################

    # Open Array DEM as netCDF
    if Format_DEM == "NetCDF":
        file_DEM = os.path.join(files_DEM, "%d.nc" % year)
        DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation")

    # Open Array DEM as TIFF
    if Format_DEM == "TIFF":
        file_name_DEM = os.path.join(files_DEM,
                                     "DEM_HydroShed_m_%s.tif" % resolution)
        DataCube_DEM = RC.Open_tiff_array(file_name_DEM)

    ################################ Landuse ##########################################

    # Open Array Basin as netCDF
    if Format_Basin == "NetCDF":
        file_Basin = os.path.join(files_Basin, "%d.nc" % year)
        DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse")
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Basin, "Landuse")
        dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg))
        destLU = RC.reproject_dataset_example(dest_basin,
                                              dataset_example,
                                              method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    # Open Array Basin as TIFF
    if Format_Basin == "TIFF":
        file_name_Basin = files_Basin
        destLU = RC.reproject_dataset_example(file_name_Basin,
                                              dataset_example,
                                              method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    ################################ Surface Runoff ##########################################

    # Open Array runoff as netCDF
    if Format_Runoff == "NetCDF":
        DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff",
                                            startdate, enddate)
        size_Z_example = DataCube_Runoff.shape[0]
        file_Runoff = os.path.join(files_Runoff, "%d.nc" % year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Runoff, "Surface_Runoff")
        DataCube_Runoff_CR = np.ones(
            [size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Runoff_one = DataCube_Runoff[i, :, :]
            dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out,
                                             str(epsg))
            dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one,
                                                       dataset_example,
                                                       method=4)
            DataCube_Runoff_CR[i, :, :] = dest_Runoff.GetRasterBand(
                1).ReadAsArray()

        DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999

    # Open Array runoff as TIFF
    if Format_Runoff == "TIFF":
        Data_Path = ''
        DataCube_Runoff = RC.Get3Darray_time_series_monthly(
            files_Runoff,
            Data_Path,
            startdate,
            enddate,
            Example_data=dataset_example)

    ################################ Surface Withdrawal ##########################################

    # Open Array Extraction as netCDF
    if Format_Extraction == "NetCDF":
        DataCube_Extraction = RC.Open_ncs_array(files_Extraction,
                                                "Surface_Withdrawal",
                                                startdate, enddate)
        size_Z_example = DataCube_Extraction.shape[0]
        file_Extraction = os.path.join(files_Extraction, "%d.nc" % year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Extraction, "Surface_Withdrawal")
        DataCube_Extraction_CR = np.ones(
            [size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Extraction_one = DataCube_Extraction[i, :, :]
            dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one,
                                                 geo_out, str(epsg))
            dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one,
                                                           dataset_example,
                                                           method=4)
            DataCube_Extraction_CR[i, :, :] = dest_Extraction.GetRasterBand(
                1).ReadAsArray()

        DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999

    # Open Array Extraction as TIFF
    if Format_Extraction == "TIFF":
        Data_Path = ''
        DataCube_Extraction = RC.Get3Darray_time_series_monthly(
            files_Extraction,
            Data_Path,
            startdate,
            enddate,
            Example_data=dataset_example)

    ################################ Create input netcdf ##########################################
    # Save data in one NetCDF file
    geo_out_example = np.array(geo_out_example)

    # Latitude and longitude
    lon_ls = np.arange(size_X_example) * geo_out_example[1] + geo_out_example[
        0] + 0.5 * geo_out_example[1]
    lat_ls = np.arange(size_Y_example) * geo_out_example[5] + geo_out_example[
        3] - 0.5 * geo_out_example[5]

    lat_n = len(lat_ls)
    lon_n = len(lon_ls)

    # Create NetCDF file
    nc_file = netCDF4.Dataset(input_nc, 'w')
    nc_file.set_fill_on()

    # Create dimensions
    lat_dim = nc_file.createDimension('latitude', lat_n)
    lon_dim = nc_file.createDimension('longitude', lon_n)

    # Create NetCDF variables
    crso = nc_file.createVariable('crs', 'i4')
    crso.long_name = 'Lon/Lat Coords in WGS84'
    crso.standard_name = 'crs'
    crso.grid_mapping_name = 'latitude_longitude'
    crso.projection = epsg_example
    crso.longitude_of_prime_meridian = 0.0
    crso.semi_major_axis = 6378137.0
    crso.inverse_flattening = 298.257223563
    crso.geo_reference = geo_out_example

    lat_var = nc_file.createVariable('latitude', 'f8', ('latitude', ))
    lat_var.units = 'degrees_north'
    lat_var.standard_name = 'latitude'
    lat_var.pixel_size = geo_out_example[5]

    lon_var = nc_file.createVariable('longitude', 'f8', ('longitude', ))
    lon_var.units = 'degrees_east'
    lon_var.standard_name = 'longitude'
    lon_var.pixel_size = geo_out_example[1]

    Dates = pd.date_range(startdate, enddate, freq='MS')
    time_or = np.zeros(len(Dates))
    i = 0
    for Date in Dates:
        time_or[i] = Date.toordinal()
        i += 1
    nc_file.createDimension('time', None)
    timeo = nc_file.createVariable('time', 'f4', ('time', ))
    timeo.units = 'Monthly'
    timeo.standard_name = 'time'

    # Variables
    demdir_var = nc_file.createVariable('demdir',
                                        'i', ('latitude', 'longitude'),
                                        fill_value=-9999)
    demdir_var.long_name = 'Flow Direction Map'
    demdir_var.grid_mapping = 'crs'

    dem_var = nc_file.createVariable('dem',
                                     'f8', ('latitude', 'longitude'),
                                     fill_value=-9999)
    dem_var.long_name = 'Altitude'
    dem_var.units = 'meters'
    dem_var.grid_mapping = 'crs'

    basin_var = nc_file.createVariable('basin',
                                       'i', ('latitude', 'longitude'),
                                       fill_value=-9999)
    basin_var.long_name = 'Altitude'
    basin_var.units = 'meters'
    basin_var.grid_mapping = 'crs'

    area_var = nc_file.createVariable('area',
                                      'f8', ('latitude', 'longitude'),
                                      fill_value=-9999)
    area_var.long_name = 'area in squared meters'
    area_var.units = 'squared_meters'
    area_var.grid_mapping = 'crs'

    runoff_var = nc_file.createVariable('Runoff_M',
                                        'f8',
                                        ('time', 'latitude', 'longitude'),
                                        fill_value=-9999)
    runoff_var.long_name = 'Runoff'
    runoff_var.units = 'm3/month'
    runoff_var.grid_mapping = 'crs'

    extraction_var = nc_file.createVariable('Extraction_M',
                                            'f8',
                                            ('time', 'latitude', 'longitude'),
                                            fill_value=-9999)
    extraction_var.long_name = 'Surface water Extraction'
    extraction_var.units = 'm3/month'
    extraction_var.grid_mapping = 'crs'

    # Load data
    lat_var[:] = lat_ls
    lon_var[:] = lon_ls
    timeo[:] = time_or

    # Static variables
    demdir_var[:, :] = DataCube_DEM_dir[:, :]
    dem_var[:, :] = DataCube_DEM[:, :]
    basin_var[:, :] = DataCube_Basin[:, :]
    area_var[:, :] = DataCube_Area[:, :]
    for i in range(len(Dates)):
        runoff_var[i, :, :] = DataCube_Runoff_CR[i, :, :]
    for i in range(len(Dates)):
        extraction_var[i, :, :] = DataCube_Extraction_CR[i, :, :]

    # Close file
    nc_file.close()
    return ()
예제 #14
0
def Nearest_Interpolate(Dir_in, Startdate, Enddate, Dir_out=None):
    """
    This functions calculates monthly tiff files based on the 8 daily tiff files. (will calculate the average)

    Parameters
    ----------
    Dir_in : str
        Path to the input data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'    
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd' 
    Dir_out : str
        Path to the output data, default is same as Dir_in

    """
    # import WA+ modules
    import wa.General.data_conversions as DC
    import wa.General.raster_conversions as RC

    # Change working directory
    os.chdir(Dir_in)

    # Find all eight daily files
    files = glob.glob('*8-daily*.tif')

    # Create array with filename and keys (DOY and year) of all the 8 daily files
    i = 0
    DOY_Year = np.zeros([len(files), 3])
    for File in files:

        # Get the time characteristics from the filename
        year = File.split('.')[-4][-4:]
        month = File.split('.')[-3]
        day = File.split('.')[-2]

        # Create pandas Timestamp
        date_file = '%s-%02s-%02s' % (year, month, day)
        Datum = pd.Timestamp(date_file)

        # Get day of year
        DOY = Datum.strftime('%j')

        # Save data in array
        DOY_Year[i, 0] = i
        DOY_Year[i, 1] = DOY
        DOY_Year[i, 2] = year

        # Loop over files
        i += 1

    # Check enddate:
    Enddate_split = Enddate.split('-')
    month_range = calendar.monthrange(int(Enddate_split[0]),
                                      int(Enddate_split[1]))[1]
    Enddate = '%d-%02d-%02d' % (int(Enddate_split[0]), int(
        Enddate_split[1]), month_range)

    # Check startdate:
    Startdate_split = Startdate.split('-')
    Startdate = '%d-%02d-01' % (int(Startdate_split[0]), int(
        Startdate_split[1]))

    # Define end and start date
    Dates = pd.date_range(Startdate, Enddate, freq='MS')
    DatesEnd = pd.date_range(Startdate, Enddate, freq='M')

    # Get array information and define projection
    geo_out, proj, size_X, size_Y = RC.Open_array_info(files[0])
    if int(proj.split('"')[-2]) == 4326:
        proj = "WGS84"

    # Get the No Data Value
    dest = gdal.Open(files[0])
    NDV = dest.GetRasterBand(1).GetNoDataValue()

    # Loop over months and create monthly tiff files
    i = 0
    for date in Dates:
        # Get Start and end DOY of the current month
        DOY_month_start = date.strftime('%j')
        DOY_month_end = DatesEnd[i].strftime('%j')

        # Search for the files that are between those DOYs
        year = date.year
        DOYs = DOY_Year[DOY_Year[:, 2] == year]
        DOYs_oneMonth = DOYs[np.logical_and(
            (DOYs[:, 1] + 8) >= int(DOY_month_start),
            DOYs[:, 1] <= int(DOY_month_end))]

        # Create empty arrays
        Monthly = np.zeros([size_Y, size_X])
        Weight_tot = np.zeros([size_Y, size_X])
        Data_one_month = np.ones([size_Y, size_X]) * np.nan

        # Loop over the files that are within the DOYs
        for EightDays in DOYs_oneMonth[:, 0]:

            # Calculate the amount of days in this month of each file
            Weight = np.ones([size_Y, size_X])

            # For start of month
            if EightDays == DOYs_oneMonth[:, 0][0]:
                Weight = Weight * int(DOYs_oneMonth[:, 1][0] + 8 -
                                      int(DOY_month_start))

            # For end of month
            elif EightDays == DOYs_oneMonth[:, 0][-1]:
                Weight = Weight * (int(DOY_month_end) -
                                   DOYs_oneMonth[:, 1][-1] + 1)

            # For the middle of the month
            else:
                Weight = Weight * 8

            # Open the array of current file
            input_name = os.path.join(Dir_in, files[int(EightDays)])
            Data = RC.Open_tiff_array(input_name)

            # Remove NDV
            Weight[Data == NDV] = 0
            Data[Data == NDV] = np.nan

            # Multiply weight time data
            Data = Data * Weight

            # Calculate the total weight and data
            Weight_tot += Weight
            Monthly[~np.isnan(Data)] += Data[~np.isnan(Data)]

        # Go to next month
        i += 1

        # Calculate the average
        Data_one_month[Weight_tot != 0.] = Monthly[
            Weight_tot != 0.] / Weight_tot[Weight_tot != 0.]

        # Define output directory
        if Dir_out == None:
            Dir_out = Dir_in

        # Define output name
        output_name = os.path.join(
            Dir_out, files[int(EightDays)].replace('8-daily', 'monthly'))
        output_name = output_name[:-6] + '01.tif'

        # Save tiff file
        DC.Save_as_tiff(output_name, Data_one_month, geo_out, proj)

    return
예제 #15
0
def NPP_GPP_Based(Dir_Basin, Data_Path_GPP, Data_Path_NPP, Startdate, Enddate):
    """
    This functions calculated monthly NDM based on the yearly NPP and monthly GPP.

    Parameters
    ----------
    Dir_Basin : str
        Path to all the output data of the Basin
    Data_Path_GPP : str
        Path from the Dir_Basin to the GPP data
    Data_Path_NPP : str
        Path from the Dir_Basin to the NPP data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd'
    Simulation : int
        Defines the simulation

    Returns
    -------
    Data_Path_NDM : str
        Path from the Dir_Basin to the normalized dry matter data

    """
    # import WA+ modules
    import wa.General.data_conversions as DC
    import wa.General.raster_conversions as RC

    # Define output folder for Normalized Dry Matter
    Data_Path_NDM = os.path.join(Dir_Basin, "NDM")
    if not os.path.exists(Data_Path_NDM):
        os.mkdir(Data_Path_NDM)

    # Define monthly time steps that will be created
    Dates = pd.date_range(Startdate, Enddate, freq = 'MS')

    # Define the years that will be calculated
    Year_Start = int(Startdate[0:4])
    Year_End = int(Enddate[0:4])
    Years = range(Year_Start, Year_End+1)

    # Loop over the years
    for year in Years:

        # Change working directory to the NPP folder
        os.chdir(Data_Path_NPP)

        # Open yearly NPP data
        yearly_NPP_File = glob.glob('*yearly*%d.01.01.tif' %int(year))[0]
        Yearly_NPP = RC.Open_tiff_array(yearly_NPP_File)

        # Get the No Data Value of the NPP file
        dest = gdal.Open(yearly_NPP_File)
        NDV = dest.GetRasterBand(1).GetNoDataValue()

        # Set the No Data Value to Nan
        Yearly_NPP[Yearly_NPP == NDV] = np.nan

        # Change working directory to the GPP folder
        os.chdir(Data_Path_GPP)

        # Find all the monthly files of that year
        monthly_GPP_Files = glob.glob('*monthly*%d.*.01.tif' %int(year))

        # Check if it are 12 files otherwise something is wrong and send the ERROR
        if not len(monthly_GPP_Files) == 12:
            print 'ERROR: Some monthly GPP Files are missing'

        # Get the projection information of the GPP inputs
        geo_out, proj, size_X, size_Y = RC.Open_array_info(monthly_GPP_Files[0])
        geo_out_NPP, proj_NPP, size_X_NPP, size_Y_NPP = RC.Open_array_info(os.path.join(Data_Path_NPP,yearly_NPP_File))


        if int(proj.split('"')[-2]) == 4326:
            proj = "WGS84"

        # Get the No Data Value of the GPP files
        dest = gdal.Open(monthly_GPP_Files[0])
        NDV = dest.GetRasterBand(1).GetNoDataValue()

        # Create a empty numpy array
        Yearly_GPP = np.zeros([size_Y, size_X])

        # Calculte the total yearly GPP
        for monthly_GPP_File in monthly_GPP_Files:

            # Open array
            Data = RC.Open_tiff_array(monthly_GPP_File)

            # Remove nan values
            Data[Data == NDV] = np.nan

            # Add data to yearly sum
            Yearly_GPP += Data

        # Check if size is the same of NPP and GPP otherwise resize
        if not (size_X_NPP is size_X or size_Y_NPP is size_Y):
            Yearly_NPP = RC.resize_array_example(Yearly_NPP, Yearly_GPP)

        # Loop over the monthly dates
        for Date in Dates:

            # If the Date is in the same year as the yearly NPP and GPP
            if Date.year == year:

                # Create empty GPP array
                monthly_GPP = np.ones([size_Y, size_X]) * np.nan

                # Get current month
                month = Date.month

                # Get the GPP file of the current year and month
                monthly_GPP_File = glob.glob('*monthly_%d.%02d.01.tif' %(int(year), int(month)))[0]
                monthly_GPP = RC.Open_tiff_array(monthly_GPP_File)
                monthly_GPP[monthly_GPP == NDV] = np.nan

                # Calculate the NDM based on the monthly and yearly NPP and GPP (fraction of GPP)
                Monthly_NDM = Yearly_NPP * monthly_GPP / Yearly_GPP * (30./12.) *10000 # kg/ha

                # Define output name
                output_name = os.path.join(Data_Path_NDM, 'NDM_MOD17_kg_ha-1_monthly_%d.%02d.01.tif' %(int(year), int(month)))

                # Save the NDM as tiff file
                DC.Save_as_tiff(output_name, Monthly_NDM, geo_out, proj)

    return(Data_Path_NDM)
예제 #16
0
def Merge_DEM_15s(output_folder_trash,output_file_merged,latlim, lonlim):

    os.chdir(output_folder_trash)
    tiff_files = glob.glob('*.tif')
    resolution_geo = []
    lonmin =  lonlim[0]
    lonmax =  lonlim[1]
    latmin =  latlim[0]
    latmax =  latlim[1]
    resolution_geo = 0.00416667

    size_x_tot = int(np.round((lonmax-lonmin) / resolution_geo))
    size_y_tot = int(np.round((latmax-latmin) / resolution_geo))

    data_tot = np.ones([size_y_tot,size_x_tot]) * -9999.

    for tiff_file in tiff_files:
        inFile=os.path.join(output_folder_trash,tiff_file)
        geo, proj, size_X, size_Y = RC.Open_array_info(inFile)
        resolution_geo = geo[1]

        lonmin_one = geo[0]
        lonmax_one = geo[0] + size_X *	geo[1]
        latmin_one = geo[3] + size_Y *	geo[5]
        latmax_one = geo[3]

        if lonmin_one < lonmin:
           lonmin_clip = lonmin
        else:
           lonmin_clip = lonmin_one

        if lonmax_one > lonmax:
            lonmax_clip = lonmax
        else:
            lonmax_clip = lonmax_one

        if latmin_one < latmin:
            latmin_clip = latmin
        else:
           latmin_clip = latmin_one

        if latmax_one > latmax:
            latmax_clip = latmax
        else:
           latmax_clip = latmax_one

        size_x_clip = int(np.round((lonmax_clip-lonmin_clip) / resolution_geo))
        size_y_clip = int(np.round((latmax_clip-latmin_clip) / resolution_geo))

        inFile=os.path.join(output_folder_trash,tiff_file)
        geo, proj, size_X, size_Y = RC.Open_array_info(inFile)
        Data = RC.Open_tiff_array(inFile)
        lonmin_tiff = geo[0]
        latmax_tiff = geo[3]
        lon_tiff_position = int(np.round((lonmin_clip - lonmin_tiff)/ resolution_geo))
        lat_tiff_position = int(np.round((latmax_tiff - latmax_clip)/ resolution_geo))
        lon_data_tot_position = int(np.round((lonmin_clip - lonmin)/ resolution_geo))
        lat_data_tot_position = int(np.round((latmax - latmax_clip)/ resolution_geo))

        Data[Data<-9999.] = -9999.
        data_tot[lat_data_tot_position:lat_data_tot_position+size_y_clip,lon_data_tot_position:lon_data_tot_position+size_x_clip][data_tot[lat_data_tot_position:lat_data_tot_position+size_y_clip,lon_data_tot_position:lon_data_tot_position+size_x_clip]==-9999]= Data[lat_tiff_position:lat_tiff_position+size_y_clip,lon_tiff_position:lon_tiff_position+size_x_clip][data_tot[lat_data_tot_position:lat_data_tot_position+size_y_clip,lon_data_tot_position:lon_data_tot_position+size_x_clip]==-9999]

    geo_out = [lonmin, resolution_geo, 0.0, latmax, 0.0, -1 * resolution_geo]
    geo_out = tuple(geo_out)
    data_tot[data_tot<-9999.] = -9999.

    return(data_tot, geo_out)
예제 #17
0
파일: Reservoirs.py 프로젝트: jupaladin/wa
def Calc_Regions(Name_NC_Basin_CR, input_JRC, sensitivity, Boundaries):

    import numpy as np

    import wa.General.raster_conversions as RC

    # Get JRC array and information
    Array = RC.Open_tiff_array(input_JRC)
    Geo_out, proj, size_X, size_Y = RC.Open_array_info(input_JRC)

    # Get Basin boundary based on LU
    Array_LU = RC.Open_nc_array(Name_NC_Basin_CR)
    LU_array = RC.resize_array_example(Array_LU, Array)
    basin_array = np.zeros(np.shape(LU_array))
    basin_array[LU_array > 0] = 1
    del LU_array

    # find all pixels with water occurence
    Array[basin_array < 1] = 0
    Array[Array < 30] = 0
    Array[Array >= 30] = 1
    del basin_array

    # sum larger areas to find lakes
    x_size = np.round(int(np.shape(Array)[0]) / 30)
    y_size = np.round(int(np.shape(Array)[1]) / 30)
    sum_array = np.zeros([x_size, y_size])

    for i in range(0, len(sum_array)):
        for j in range(0, len(sum_array[1])):
            sum_array[i, j] = np.sum(Array[i * 30:(i + 1) * 30,
                                           j * 30:(j + 1) * 30])

    del Array

    lakes = np.argwhere(sum_array >= sensitivity)
    lake_info = np.zeros([1, 4])

    i = 0
    k = 1

    # find all neighboring pixels
    for lake in lakes:
        added = 0
        for j in range(0, k):
            if (lake[0] >= lake_info[j, 0] and lake[0] <= lake_info[j, 1]
                    and lake[1] >= lake_info[j, 2]
                    and lake[1] <= lake_info[j, 3]):
                lake_info[j, 0] = np.maximum(
                    np.minimum(lake_info[j, 0], lake[0] - 8), 0)
                lake_info[j, 1] = np.minimum(
                    np.maximum(lake_info[j, 1], lake[0] + 8), x_size)
                lake_info[j, 2] = np.maximum(
                    np.minimum(lake_info[j, 2], lake[1] - 8), 0)
                lake_info[j, 3] = np.minimum(
                    np.maximum(lake_info[j, 3], lake[1] + 8), y_size)
                added = 1

        if added == 0:
            lake_info_one = np.zeros([4])
            lake_info_one[0] = np.maximum(0, lake[0] - 8)
            lake_info_one[1] = np.minimum(x_size, lake[0] + 8)
            lake_info_one[2] = np.maximum(0, lake[1] - 8)
            lake_info_one[3] = np.minimum(y_size, lake[1] + 8)
            lake_info = np.append(lake_info, lake_info_one)
            lake_info = np.resize(lake_info, (k + 1, 4))
            k += 1

    # merge all overlaping regions
    p = 0
    lake_info_end = np.zeros([1, 4])

    for i in range(1, k):
        added = 0
        lake_info_one = lake_info[i, :]
        lake_y_region = range(int(lake_info_one[0]), int(lake_info_one[1] + 1))
        lake_x_region = range(int(lake_info_one[2]), int(lake_info_one[3] + 1))

        for j in range(0, p + 1):
            if len(lake_y_region) + len(
                    range(int(lake_info_end[j, 0]),
                          int(lake_info_end[j, 1] + 1))) is not len(
                              np.unique(
                                  np.append(
                                      lake_y_region,
                                      range(int(lake_info_end[j, 0]),
                                            int(lake_info_end[j, 1] + 1))))
                          ) and len(lake_x_region) + len(
                              range(int(lake_info_end[j, 2]),
                                    int(lake_info_end[j, 3] + 1))) is not len(
                                        np.unique(
                                            np.append(
                                                lake_x_region,
                                                range(
                                                    int(lake_info_end[j, 2]),
                                                    int(lake_info_end[j, 3] +
                                                        1))))):
                lake_info_end[j, 0] = np.min(
                    np.unique(
                        np.append(
                            lake_y_region,
                            range(int(lake_info_end[j, 0]),
                                  int(lake_info_end[j, 1] + 1)))))
                lake_info_end[j, 1] = np.max(
                    np.unique(
                        np.append(
                            lake_y_region,
                            range(int(lake_info_end[j, 0]),
                                  int(lake_info_end[j, 1] + 1)))))
                lake_info_end[j, 2] = np.min(
                    np.unique(
                        np.append(
                            lake_x_region,
                            range(int(lake_info_end[j, 2]),
                                  int(lake_info_end[j, 3] + 1)))))
                lake_info_end[j, 3] = np.max(
                    np.unique(
                        np.append(
                            lake_x_region,
                            range(int(lake_info_end[j, 2]),
                                  int(lake_info_end[j, 3] + 1)))))
                added = 1

        if added == 0:
            lake_info_one = lake_info[i, :]
            lake_info_end = np.append(lake_info_end, lake_info_one)
            lake_info_end = np.resize(lake_info_end, (p + 2, 4))

            p += 1

    # calculate the area
    Regions = np.zeros([p, 4])
    pixel_x_size = Geo_out[1] * 30
    pixel_y_size = Geo_out[5] * 30
    for region in range(1, p + 1):
        Regions[region - 1,
                0] = Geo_out[0] + pixel_x_size * lake_info_end[region, 2]
        Regions[region - 1,
                1] = Geo_out[0] + pixel_x_size * (lake_info_end[region, 3] + 1)
        Regions[region - 1,
                2] = Geo_out[3] + pixel_y_size * (lake_info_end[region, 1] + 1)
        Regions[region - 1,
                3] = Geo_out[3] + pixel_y_size * lake_info_end[region, 0]

    return (Regions)
예제 #18
0
def RetrieveData(Date, args):
    """
    This function retrieves RFE data for a given date from the
    ftp://disc2.nascom.nasa.gov server.

    Keyword arguments:
    Date -- 'yyyy-mm-dd'
    args -- A list of parameters defined in the DownloadData function.
    """
    # Argument
    [output_folder, lonlim, latlim, xID, yID] = args

    # Create https
    DirFile = os.path.join(output_folder,'P_RFE.v2.0_mm-day-1_daily_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d')))
            
    if not os.path.isfile(DirFile):
        # open ftp server
        ftp = FTP("ftp.cpc.ncep.noaa.gov", "", "")
        ftp.login()
				
    	 # Define FTP path to directory 			
        pathFTP = 'fews/fewsdata/africa/rfe2/geotiff/'

        # find the document name in this directory								
        ftp.cwd(pathFTP)
        listing = []
				
        # read all the file names in the directory			
        ftp.retrlines("LIST", listing.append)
				
    	  # create all the input name (filename) and output (outfilename, filetif, DiFileEnd) names			
        filename = 'africa_rfe.%s%02s%02s.tif.zip' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))
        outfilename = os.path.join(output_folder,'africa_rfe.%s%02s%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) 
 
        try:
            local_filename = os.path.join(output_folder, filename)
            lf = open(local_filename, "wb")
            ftp.retrbinary("RETR " + filename, lf.write)
            lf.close()

            # unzip the file
            zip_filename = os.path.join(output_folder, filename)
            DC.Extract_Data(zip_filename, output_folder)

            # open tiff file
            dataset = RC.Open_tiff_array(outfilename)

            # clip dataset to the given extent
            data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
            data[data < 0] = -9999

            # save dataset as geotiff file
            latlim_adj = 40.05 - 0.1 * yID[0] 
            lonlim_adj = -20.05 + 0.1 * xID[0]             
            geo = [lonlim_adj, 0.1, 0, latlim_adj, 0, -0.1]
            DC.Save_as_tiff(name=DirFile, data=data, geo=geo, projection="WGS84")

            # delete old tif file
            os.remove(outfilename)
            os.remove(zip_filename)
            
        except:
            print "file not exists"            


    return True
예제 #19
0
def main(Dir,
         Startdate='',
         Enddate='',
         latlim=[-50, 50],
         lonlim=[-180, 180],
         cores=False,
         Waitbar=1):
    """
    This function downloads RFE V2.0 (monthly) data

    Keyword arguments:
    Dir -- 'C:/file/to/path/'
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -50 and 50)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    cores -- The number of cores used to run the routine.
             It can be 'False' to avoid using parallel computing
             routines.
    Waitbar -- 1 (Default) will print a waitbar             
    """
    # Download data
    print '\nDownload monthly RFE precipitation data for period %s till %s' % (
        Startdate, Enddate)

    # Check variables
    if not Startdate:
        Startdate = pd.Timestamp('2001-01-01')
    if not Enddate:
        Enddate = pd.Timestamp('Now')
    Dates = pd.date_range(Startdate, Enddate, freq='MS')

    # Make directory
    output_folder = os.path.join(Dir, 'Precipitation', 'RFE', 'Monthly/')
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    # Create Waitbar
    if Waitbar == 1:
        import wa.Functions.Start.WaitbarConsole as WaitbarConsole
        total_amount = len(Dates)
        amount = 0
        WaitbarConsole.printWaitBar(amount,
                                    total_amount,
                                    prefix='Progress:',
                                    suffix='Complete',
                                    length=50)

    for Date in Dates:
        month = Date.month
        year = Date.year
        end_day = calendar.monthrange(year, month)[1]
        Startdate_one_month = '%s-%02s-01' % (year, month)
        Enddate_one_month = '%s-%02s-%02s' % (year, month, end_day)

        DownloadData(Dir, Startdate_one_month, Enddate_one_month, latlim,
                     lonlim, 0, cores)

        Dates_daily = pd.date_range(Startdate_one_month,
                                    Enddate_one_month,
                                    freq='D')

        # Make directory
        input_folder_daily = os.path.join(Dir, 'Precipitation', 'RFE',
                                          'Daily/')
        i = 0

        for Date_daily in Dates_daily:
            file_name = 'P_RFE.v2.0_mm-day-1_daily_%s.%02s.%02s.tif' % (
                Date_daily.strftime('%Y'), Date_daily.strftime('%m'),
                Date_daily.strftime('%d'))
            file_name_daily_path = os.path.join(input_folder_daily, file_name)
            if os.path.exists(file_name_daily_path):
                if Date_daily == Dates_daily[i]:
                    Raster_monthly = RC.Open_tiff_array(file_name_daily_path)
                else:
                    Raster_monthly += RC.Open_tiff_array(file_name_daily_path)
            else:
                if Date_daily == Dates_daily[i]:
                    i += 1

        geo_out, proj, size_X, size_Y = RC.Open_array_info(
            file_name_daily_path)
        file_name = 'P_RFE.v2.0_mm-month-1_monthly_%s.%02s.01.tif' % (
            Date.strftime('%Y'), Date.strftime('%m'))
        file_name_output = os.path.join(output_folder, file_name)
        DC.Save_as_tiff(file_name_output,
                        Raster_monthly,
                        geo_out,
                        projection="WGS84")

        if Waitbar == 1:
            amount += 1
            WaitbarConsole.printWaitBar(amount,
                                        total_amount,
                                        prefix='Progress:',
                                        suffix='Complete',
                                        length=50)
예제 #20
0
def Nearest_Interpolate(Dir_in, Startdate, Enddate, Dir_out=None):
    """
    This functions calculates monthly tiff files based on the daily tiff files.
    (will calculate the total sum)

    Parameters
    ----------
    Dir_in : str
        Path to the input data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd'
    Dir_out : str
        Path to the output data, default is same as Dir_in

    """
    # import WA+ modules
    import wa.General.data_conversions as DC
    import wa.General.raster_conversions as RC

    # Change working directory
    os.chdir(Dir_in)

    # Define end and start date
    Dates = pd.date_range(Startdate, Enddate, freq='MS')

    # Find all monthly files
    files = glob.glob('*daily*.tif')

    # Get array information and define projection
    geo_out, proj, size_X, size_Y = RC.Open_array_info(files[0])
    if int(proj.split('"')[-2]) == 4326:
        proj = "WGS84"

    # Get the No Data Value
    dest = gdal.Open(files[0])
    NDV = dest.GetRasterBand(1).GetNoDataValue()

    for date in Dates:
        Year = date.year
        Month = date.month
        files_one_year = glob.glob('*daily*%d.%02d*.tif' % (Year, Month))

        # Create empty arrays
        Month_data = np.zeros([size_Y, size_X])

        # Get amount of days in month
        Amount_days_in_month = int(calendar.monthrange(Year, Month)[1])

        if len(files_one_year) is not Amount_days_in_month:
            print("One day is missing!!!")

        for file_one_year in files_one_year:
            file_path = os.path.join(Dir_in, file_one_year)

            Day_data = RC.Open_tiff_array(file_path)
            Day_data[np.isnan(Day_data)] = 0.0
            Day_data[Day_data == -9999] = 0.0
            Month_data += Day_data

        # Define output directory
        if Dir_out is None:
            Dir_out = Dir_in

        # Define output name
        output_name = os.path.join(Dir_out, file_one_year
                                   .replace('daily', 'monthly')
                                   .replace('day', 'month'))

        output_name = output_name[:-14] + '%d.%02d.01.tif' % (date.year, date.month)

        # Save tiff file
        DC.Save_as_tiff(output_name, Month_data, geo_out, proj)

    return
예제 #21
0
파일: main.py 프로젝트: jupaladin/wa
def Calculate(Basin, P_Product, ET_Product, Inflow_Text_Files,
              Reservoirs_Lakes_Calculations, Startdate, Enddate, Simulation):
    '''
    This functions consists of the following sections:
    1. Set General Parameters
    2. Download Data
    3. Convert the RAW data to NETCDF files
    4. Create Mask based on LU map
    5. Calculate Runoff based on Budyko
    6. Add inflow in Runoff
    7. Calculate River flow
       7.1  Route Runoff
       7.2  Add Reservoirs
       7.3  Add surface water withdrawals
    '''
    # import General modules
    import os
    import gdal
    import numpy as np
    import pandas as pd
    import copy

    # import WA plus modules
    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Five as Five
    import wa.Functions.Start as Start

    ######################### 1. Set General Parameters ##############################

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    if not os.path.exists(Dir_Basin):
        os.makedirs(Dir_Basin)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, LU_dataset = Start.Boundaries.Determine_LU_Based(Basin)
    LU_data = RC.Open_tiff_array(LU_dataset)
    geo_out_LU, proj_LU, size_X_LU, size_Y_LU = RC.Open_array_info(LU_dataset)

    # Define resolution of SRTM
    Resolution = '15s'

    # Get the amount of months
    Amount_months = len(pd.date_range(Startdate, Enddate, freq='MS'))
    Amount_months_reservoirs = Amount_months + 1

    # Startdate for moving window Budyko
    Startdate_2months_Timestamp = pd.Timestamp(Startdate) - pd.DateOffset(
        months=2)
    Startdate_2months = Startdate_2months_Timestamp.strftime('%Y-%m-%d')

    ############################# 2. Download Data ###################################

    # Download data
    Data_Path_P = Start.Download_Data.Precipitation(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, P_Product)
    Data_Path_ET = Start.Download_Data.Evapotranspiration(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, ET_Product)
    Data_Path_DEM = Start.Download_Data.DEM(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    if Resolution is not '3s':
        Data_Path_DEM = Start.Download_Data.DEM(
            Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
            [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_ETref = Start.Download_Data.ETreference(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate)
    Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']])
    Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly')

    ###################### 3. Convert the RAW data to NETCDF files ##############################
    # The sequence of converting the data is:
    # DEM
    # DEM flow directions
    # Precipitation
    # Evapotranspiration
    # Reference Evapotranspiration

    #_____________________________________DEM__________________________________
    # Get the data of DEM and save as nc, This dataset is also used as reference for others
    Example_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                   'DEM_HydroShed_m_%s.tif' % Resolution)
    DEMdest = gdal.Open(Example_dataset)
    Xsize_CR = int(DEMdest.RasterXSize)
    Ysize_CR = int(DEMdest.RasterYSize)
    DataCube_DEM_CR = DEMdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_CR = DC.Create_NC_name('DEM_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_CR):
        DC.Save_as_NC(Name_NC_DEM_CR, DataCube_DEM_CR, 'DEM_CR',
                      Example_dataset)
    DEMdest = None

    #___________________________________DEM Dir________________________________
    # Get the data of flow direction and save as nc.
    Dir_dataset = os.path.join(Dir_Basin, Data_Path_DEM_Dir,
                               'DIR_HydroShed_-_%s.tif' % Resolution)
    DEMDirdest = gdal.Open(Dir_dataset)
    DataCube_DEM_Dir_CR = DEMDirdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_Dir_CR = DC.Create_NC_name('DEM_Dir_CR', Simulation, Dir_Basin,
                                           5)
    if not os.path.exists(Name_NC_DEM_Dir_CR):
        DC.Save_as_NC(Name_NC_DEM_Dir_CR, DataCube_DEM_Dir_CR, 'DEM_Dir_CR',
                      Example_dataset)
    DEMDirdest = None
    del DataCube_DEM_Dir_CR

    #______________________________ Precipitation______________________________
    # Define info for the nc files
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Precipitation data
    Name_NC_Prec_CR = DC.Create_NC_name('Prec_CR', Simulation, Dir_Basin, 5,
                                        info)
    if not os.path.exists(Name_NC_Prec_CR):

        # Get the data of Precipitation and save as nc
        DataCube_Prec_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_P_Monthly,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_Prec_CR, DataCube_Prec_CR, 'Prec_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_Prec_CR

    #____________________________ Evapotranspiration___________________________
    # Evapotranspiration data
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_ET_CR = DC.Create_NC_name('ET_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ET_CR):

        # Get the data of Evaporation and save as nc
        DataCube_ET_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ET,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ET_CR, DataCube_ET_CR, 'ET_CR', Example_dataset,
                      Startdate_2months, Enddate, 'monthly', 0.01)
        del DataCube_ET_CR

    #_______________________Reference Evapotranspiration_______________________
    # Reference Evapotranspiration data
    Name_NC_ETref_CR = DC.Create_NC_name('ETref_CR', Simulation, Dir_Basin, 5,
                                         info)
    if not os.path.exists(Name_NC_ETref_CR):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ETref,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ETref_CR, DataCube_ETref_CR, 'ETref_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_ETref_CR

    #_______________________fraction surface water _______________________

    Name_NC_frac_sw_CR = DC.Create_NC_name('Fraction_SW_CR', Simulation,
                                           Dir_Basin, 5)
    if not os.path.exists(Name_NC_frac_sw_CR):
        DataCube_frac_sw = np.ones_like(LU_data) * np.nan

        import wa.Functions.Start.Get_Dictionaries as GD

        # Get dictionaries and keys
        lulc = GD.get_sheet5_classes()
        lulc_dict = GD.get_sheet5_classes().keys()
        consumed_frac_dict = GD.sw_supply_fractions_sheet5()

        for key in lulc_dict:
            Numbers = lulc[key]
            for LU_nmbr in Numbers:
                Mask = np.zeros_like(LU_data)
                Mask[LU_data == LU_nmbr] = 1
                DataCube_frac_sw[Mask == 1] = consumed_frac_dict[key]

        dest_frac_sw = DC.Save_as_MEM(DataCube_frac_sw, geo_out_LU, proj_LU)
        dest_frac_sw_CR = RC.reproject_dataset_example(dest_frac_sw,
                                                       Example_dataset)
        DataCube_frac_sw_CR = dest_frac_sw_CR.ReadAsArray()
        DataCube_frac_sw_CR[DataCube_frac_sw_CR == 0] = np.nan

        DC.Save_as_NC(Name_NC_frac_sw_CR,
                      DataCube_frac_sw_CR,
                      'Fraction_SW_CR',
                      Example_dataset,
                      Scaling_factor=0.01)
        del DataCube_frac_sw_CR

    del DataCube_DEM_CR
    ##################### 4. Create Mask based on LU map ###########################

    # Now a mask will be created to define the area of interest (pixels where there is a landuse defined)

    #_____________________________________LU___________________________________
    destLU = RC.reproject_dataset_example(LU_dataset,
                                          Example_dataset,
                                          method=1)
    DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()

    Raster_Basin_CR = np.zeros([Ysize_CR, Xsize_CR])
    Raster_Basin_CR[DataCube_LU_CR > 0] = 1
    Name_NC_Basin_CR = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin_CR):
        DC.Save_as_NC(Name_NC_Basin_CR, Raster_Basin_CR, 'Basin_CR',
                      Example_dataset)
        #del Raster_Basin
    '''
    Name_NC_Basin = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin):

        Raster_Basin = RC.Vector_to_Raster(Dir_Basin, Shape_file_name_shp, Example_dataset)
        Raster_Basin = np.clip(Raster_Basin, 0, 1)
        DC.Save_as_NC(Name_NC_Basin, Raster_Basin, 'Basin_CR', Example_dataset)
        #del Raster_Basin
    '''
    ###################### 5. Calculate Runoff based on Budyko ###########################

    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Define the output names of section 5 and 6
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin,
                                          5, info)
    Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_CR

    if not os.path.exists(Name_NC_Runoff_CR):

        # Calculate runoff based on Budyko
        DataCube_Runoff_CR = Five.Budyko.Calc_runoff(Name_NC_ETref_CR,
                                                     Name_NC_Prec_CR)

        # Save the runoff as netcdf
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Runoff_CR
    '''  
    ###################### Calculate Runoff with P min ET ###########################
  
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Runoff_CR):

        ET = RC.Open_nc_array(Name_NC_ET_CR)
        P = RC.Open_nc_array(Name_NC_Prec_CR) 
        DataCube_Runoff_CR = P - ET
        DataCube_Runoff_CR[:,:,:][DataCube_Runoff_CR<=0.1] = 0
        DataCube_Runoff_CR[:,:,:][np.isnan(DataCube_Runoff_CR)] = 0                          
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Runoff_CR

     '''
    ############### 6. Add inflow in basin by using textfile #########################

    # add inlets if there are textfiles defined
    if len(Inflow_Text_Files) > 0:

        # Create name of the Runoff with inlets
        Name_NC_Runoff_with_Inlets_CR = DC.Create_NC_name(
            'Runoff_with_Inlets_CR', Simulation, Dir_Basin, 5, info)

        # Use this runoff name for the routing (it will overwrite the runoff without inlets)
        Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_with_Inlets_CR

        # Create the file if it not exists
        if not os.path.exists(Name_NC_Runoff_with_Inlets_CR):

            # Calculate the runoff that will be routed by including the inlets
            DataCube_Runoff_with_Inlets_CR = Five.Inlets.Add_Inlets(
                Name_NC_Runoff_CR, Inflow_Text_Files)

            # Save this runoff as netcdf
            DC.Save_as_NC(Name_NC_Runoff_with_Inlets_CR,
                          DataCube_Runoff_with_Inlets_CR,
                          'Runoff_with_Inlets_CR', Example_dataset, Startdate,
                          Enddate, 'monthly', 0.01)
            del DataCube_Runoff_with_Inlets_CR

    ######################### 7. Now the surface water is calculated #################

    # Names for dicionaries and nc files
    # CR1 = Natural_flow with only green water
    # CR2 = Natural_flow with only green water and reservoirs
    # CR3 = Flow with green, blue and reservoirs

    ######################### 7.1 Apply Channel Routing ###############################

    # Create the name for the netcdf outputs for section 7.1
    info = [
        'monthly', 'pixels', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Acc_Pixels_CR = DC.Create_NC_name('Acc_Pixels_CR', Simulation,
                                              Dir_Basin, 5)
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Discharge_CR1 = DC.Create_NC_name('Discharge_CR1', Simulation,
                                              Dir_Basin, 5, info)

    # If one of the outputs does not exists, run this part
    if not (os.path.exists(Name_NC_Acc_Pixels_CR)
            and os.path.exists(Name_NC_Discharge_CR1)):

        Accumulated_Pixels_CR, Discharge_CR1 = Five.Channel_Routing.Channel_Routing(
            Name_NC_DEM_Dir_CR,
            Name_NC_Runoff_for_Routing_CR,
            Name_NC_Basin_CR,
            Example_dataset,
            Degrees=1)

        # Save Results
        DC.Save_as_NC(Name_NC_Acc_Pixels_CR, Accumulated_Pixels_CR,
                      'Acc_Pixels_CR', Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge_CR1, Discharge_CR1, 'Discharge_CR1',
                      Example_dataset, Startdate, Enddate, 'monthly')

    ################# Calculate the natural river and river zones #################

    Name_NC_Rivers_CR = DC.Create_NC_name('Rivers_CR', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Rivers_CR):

        # Open routed discharge array
        Discharge_CR1 = RC.Open_nc_array(Name_NC_Discharge_CR1)
        Raster_Basin = RC.Open_nc_array(Name_NC_Basin_CR)

        # Calculate mean average over the period
        if len(np.shape(Discharge_CR1)) > 2:
            Routed_Discharge_Ave = np.nanmean(Discharge_CR1, axis=0)
        else:
            Routed_Discharge_Ave = Discharge_CR1

        # Define the 2% highest pixels as rivers
        Rivers = np.zeros([
            np.size(Routed_Discharge_Ave, 0),
            np.size(Routed_Discharge_Ave, 1)
        ])
        Routed_Discharge_Ave[Raster_Basin != 1] = np.nan
        Routed_Discharge_Ave_number = np.nanpercentile(Routed_Discharge_Ave,
                                                       98)
        Rivers[
            Routed_Discharge_Ave >
            Routed_Discharge_Ave_number] = 1  # if yearly average is larger than 5000km3/month that it is a river

        # Save the river file as netcdf file
        DC.Save_as_NC(Name_NC_Rivers_CR, Rivers, 'Rivers_CR', Example_dataset)

    ########################## Create river directories ###########################

    Name_py_River_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR1_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_River_dict_CR1)
            and os.path.exists(Name_py_DEM_dict_CR1)
            and os.path.exists(Name_py_Distance_dict_CR1)):

        # Get river and DEM dict
        River_dict_CR1, DEM_dict_CR1, Distance_dict_CR1 = Five.Create_Dict.Rivers_General(
            Name_NC_DEM_CR, Name_NC_DEM_Dir_CR, Name_NC_Acc_Pixels_CR,
            Name_NC_Rivers_CR, Example_dataset)
        np.save(Name_py_River_dict_CR1, River_dict_CR1)
        np.save(Name_py_DEM_dict_CR1, DEM_dict_CR1)
        np.save(Name_py_Distance_dict_CR1, Distance_dict_CR1)
    else:
        # Load
        River_dict_CR1 = np.load(Name_py_River_dict_CR1).item()
        DEM_dict_CR1 = np.load(Name_py_DEM_dict_CR1).item()
        Distance_dict_CR1 = np.load(Name_py_Distance_dict_CR1).item()

    Name_py_Discharge_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR1_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR1):
        # Get discharge dict
        Discharge_dict_CR1 = Five.Create_Dict.Discharge(
            Name_NC_Discharge_CR1, River_dict_CR1, Amount_months,
            Example_dataset)
        np.save(Name_py_Discharge_dict_CR1, Discharge_dict_CR1)
    else:
        # Load
        Discharge_dict_CR1 = np.load(Name_py_Discharge_dict_CR1).item()

    ###################### 7.2 Calculate surface water storage characteristics ######################

    Name_py_Discharge_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_River_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Diff_Water_Volume = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Diff_Water_Volume_CR2_simulation%d.npy' % (Simulation))
    Name_py_Regions = os.path.join(Dir_Basin, 'Simulations',
                                   'Simulation_%d' % Simulation, 'Sheet_5',
                                   'Regions_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_Discharge_dict_CR2)
            and os.path.exists(Name_py_River_dict_CR2)
            and os.path.exists(Name_py_DEM_dict_CR2)
            and os.path.exists(Name_py_Distance_dict_CR2)):

        # Copy dicts as starting adding reservoir
        Discharge_dict_CR2 = copy.deepcopy(Discharge_dict_CR1)
        River_dict_CR2 = copy.deepcopy(River_dict_CR1)
        DEM_dict_CR2 = copy.deepcopy(DEM_dict_CR1)
        Distance_dict_CR2 = copy.deepcopy(Distance_dict_CR1)

        if Reservoirs_Lakes_Calculations == 1:

            # define input tiffs for surface water calculations
            input_JRC = os.path.join(Dir_Basin, Data_Path_JRC_occurrence,
                                     'JRC_Occurrence_percent.tif')
            DEM_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                       'DEM_HydroShed_m_3s.tif')

            sensitivity = 700  # 900 is less sensitive 1 is very sensitive
            Regions = Five.Reservoirs.Calc_Regions(Name_NC_Basin_CR, input_JRC,
                                                   sensitivity, Boundaries)

            Diff_Water_Volume = np.zeros(
                [len(Regions), Amount_months_reservoirs - 1, 3])
            reservoir = 0

            for region in Regions:

                popt = Five.Reservoirs.Find_Area_Volume_Relation(
                    region, input_JRC, DEM_dataset)

                Area_Reservoir_Values = Five.Reservoirs.GEE_calc_reservoir_area(
                    region, Startdate, Enddate)

                Diff_Water_Volume[
                    reservoir, :, :] = Five.Reservoirs.Calc_Diff_Storage(
                        Area_Reservoir_Values, popt)
                reservoir += 1

            ################# 7.3 Add storage reservoirs and change outflows ##################
            Discharge_dict_CR2, River_dict_CR2, DEM_dict_CR2, Distance_dict_CR2 = Five.Reservoirs.Add_Reservoirs(
                Name_NC_Rivers_CR, Name_NC_Acc_Pixels_CR, Diff_Water_Volume,
                River_dict_CR2, Discharge_dict_CR2, DEM_dict_CR2,
                Distance_dict_CR2, Regions, Example_dataset)

            np.save(Name_py_Regions, Regions)
            np.save(Name_py_Diff_Water_Volume, Diff_Water_Volume)

        np.save(Name_py_Discharge_dict_CR2, Discharge_dict_CR2)
        np.save(Name_py_River_dict_CR2, River_dict_CR2)
        np.save(Name_py_DEM_dict_CR2, DEM_dict_CR2)
        np.save(Name_py_Distance_dict_CR2, Distance_dict_CR2)

    else:
        # Load
        Discharge_dict_CR2 = np.load(Name_py_Discharge_dict_CR2).item()
        River_dict_CR2 = np.load(Name_py_River_dict_CR2).item()
        DEM_dict_CR2 = np.load(Name_py_DEM_dict_CR2).item()
        Distance_dict_CR2 = np.load(Name_py_Distance_dict_CR2).item()

    ####################### 7.3 Add surface water withdrawals #############################

    Name_py_Discharge_dict_CR3 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR3_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR3):

        Discharge_dict_CR3, DataCube_ETblue_m3 = Five.Irrigation.Add_irrigation(
            Discharge_dict_CR2, River_dict_CR2, Name_NC_Rivers_CR,
            Name_NC_ET_CR, Name_NC_ETref_CR, Name_NC_Prec_CR, Name_NC_Basin_CR,
            Name_NC_frac_sw_CR, Startdate, Enddate, Example_dataset)
        np.save(Name_py_Discharge_dict_CR3, Discharge_dict_CR3)

        # save ETblue as nc
        info = [
            'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
            ''.join([Enddate[5:7], Enddate[0:4]])
        ]
        Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 5,
                                           info)
        DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue_m3, 'ETblue',
                      Example_dataset, Startdate, Enddate, 'monthly')

    else:
        Discharge_dict_CR3 = np.load(Name_py_Discharge_dict_CR3).item()

    ################################# Plot graph ##################################

    # Draw graph
    Five.Channel_Routing.Graph_DEM_Distance_Discharge(
        Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2,
        Startdate, Enddate, Example_dataset)

    ######################## Change data to fit the LU data #######################

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Discharge = DC.Create_NC_name('Discharge', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Discharge_CR = DC.Convert_dict_to_array(
            River_dict_CR2, Discharge_dict_CR3, Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge',
                      Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Discharge_CR

    # DEM
    Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR)
        DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR,
                                               LU_data,
                                               method=1)
        DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset)
        del DataCube_DEM

    # flow direction
    Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_Dir):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR)
        DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR,
                                                   LU_data,
                                                   method=1)
        DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset)
        del DataCube_DEM_Dir

    # Precipitation
    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Prec):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Prec = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Prec

    # Evapotranspiration
    Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_ET):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ET = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate,
                      Enddate, 'monthly', 0.01)
        del DataCube_ET

    # Reference Evapotranspiration data
    Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ETref):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ETref

    # Rivers
    Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5,
                                       info)
    if not os.path.exists(Name_NC_Rivers):

        # Get the data of Reference Evapotranspiration and save as nc
        Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR)
        DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data)
        DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset)
        del DataCube_Rivers, Rivers_CR

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge',
                                                 Simulation, Dir_Basin, 5,
                                                 info)
    if not os.path.exists(Name_NC_Routed_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge)
        DataCube_Routed_Discharge = RC.resize_array_example(
            Routed_Discharge_CR, LU_data)
        DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge,
                      'Routed_Discharge', LU_dataset, Startdate, Enddate,
                      'monthly')
        del DataCube_Routed_Discharge, Routed_Discharge_CR

    # Get raster information
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    Rivers = RC.Open_nc_array(Name_NC_Rivers_CR)

    # Create ID Matrix
    y, x = np.indices((size_Y, size_X))
    ID_Matrix = np.int32(
        np.ravel_multi_index(np.vstack((y.ravel(), x.ravel())),
                             (size_Y, size_X),
                             mode='clip').reshape(x.shape)) + 1

    # Get tiff array time dimension:
    time_dimension = int(np.shape(Discharge_dict_CR3[0])[0])

    # create an empty array
    Result = np.zeros([time_dimension, size_Y, size_X])

    for river_part in range(0, len(River_dict_CR2)):
        for river_pixel in range(1, len(River_dict_CR2[river_part])):
            river_pixel_ID = River_dict_CR2[river_part][river_pixel]
            if len(np.argwhere(ID_Matrix == river_pixel_ID)) > 0:
                row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:]
                Result[:, row,
                       col] = Discharge_dict_CR3[river_part][:, river_pixel]
        print(river_part)

    Outflow = Discharge_dict_CR3[0][:, 1]

    for i in range(0, time_dimension):
        output_name = r'C:/testmap/rtest_%s.tif' % i
        Result_one = Result[i, :, :]
        DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84")

    import os

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5,
                                    info)
    Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan

    DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset,
                  Startdate, Enddate, 'monthly')

    return ()
예제 #22
0
파일: hum.py 프로젝트: tisake/SEBAL
humid = r"D:\Weather\Lebanon\Bekaa-ETref\2017\Weather_Data\Model\GLDAS\daily\qair_f_inst\mean/"
humids = [
    os.path.join(humid, fn) for fn in next(os.walk(humid))[2]
    if fn[-4:] == '.tif'
]

press = r"D:\Weather\Lebanon\Bekaa-ETref\2017\Weather_Data\Model\GLDAS\daily\psurf_f_inst\mean/"
presss = [
    os.path.join(press, fn) for fn in next(os.walk(press))[2]
    if fn[-4:] == '.tif'
]

Outfilepath = r"D:\Weather\Lebanon\Bekaa-ETref\2017\Weather_Data\Model\GLDAS\daily\humid/"

for i in range(0, len(tmeans)):
    geo_out, proj, size_X, size_Y = RC.Open_array_info(tmeans[i])
    Tdata = RC.Open_tiff_array(tmeans[i])
    Tdata[Tdata < -900] = np.nan
    Pdata = RC.Open_tiff_array(presss[i])
    Hdata = RC.Open_tiff_array(humids[i])

    Esdata = 0.6108 * np.exp((17.27 * Tdata) / (Tdata + 237.3))
    HumData = np.minimum((1.6077717 * Hdata * Pdata / Esdata), 1) * 100

    datestamp = tmeans[i][-14:-4]

    Outfilename = os.path.join(Outfilepath, datestamp + '.tif')

    DC.Save_as_tiff(Outfilename, HumData, geo_out, "WGS84")