예제 #1
0
def run(input_nc, Inflow_Text_Files):
    '''
    This functions add inflow to the runoff dataset before the channel routing.
    The inflow must be a text file with a certain format. The first line of this format are the latitude and longitude.
    Hereafter for each line the time (ordinal time) and the inflow (m3/month) seperated with one space is defined. See example below:

    lat lon
    733042 156225.12
    733073 32511321.2
    733102 212315.25
    733133 2313266.554
    '''
    # General modules
    import numpy as np

    # Water Accounting modules
    import watools.General.raster_conversions as RC
    import watools.Functions.Start.Area_converter as Area

    Runoff = RC.Open_nc_array(input_nc, Var='Runoff_M')

    # Open information and open the Runoff array
    geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(input_nc)

    # Calculate the surface area of every pixel
    dlat, dlon = Area.Calc_dlat_dlon(geo_out, size_X, size_Y)
    area_in_m2 = dlat * dlon

    for Inflow_Text_File in Inflow_Text_Files:

        # Open the inlet text data
        Inlet = np.genfromtxt(Inflow_Text_File, dtype=None, delimiter=" ")

        # Read out the coordinates
        Coord = Inlet[0, :]
        Lon_coord = Coord[0]
        Lat_coord = Coord[1]

        # Search for the pixel
        lon_pix = int(np.ceil((float(Lon_coord) - geo_out[0]) / geo_out[1]))
        lat_pix = int(np.ceil((float(Lat_coord) - geo_out[3]) / geo_out[5]))

        # Add the value on top of the Runoff array
        for i in range(1, len(Inlet)):
            time = float(Inlet[i, 0])
            time_step = np.argwhere(np.logical_and(Time >= time, Time <= time))
            if len(time_step) > 0:
                time_step_array = int(time_step[0][0])
                value_m3_month = float(Inlet[i, 1])
                area_in_m2_pixel = area_in_m2[lat_pix, lon_pix]
                value_mm = (value_m3_month / area_in_m2_pixel) * 1000
                Runoff[time_step_array, lat_pix,
                       lon_pix] = Runoff[time_step_array, lat_pix,
                                         lon_pix] + value_mm
    return (Runoff)
예제 #2
0
def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction, startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction):

    # Define a year to get the epsg and geo
    Startdate_timestamp = pd.Timestamp(startdate)
    year = Startdate_timestamp.year

    ############################## Drainage Direction #####################################

    # Open Array DEM dir as netCDF
    if Format_DEM_dir == "NetCDF":
        file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" %year)
        DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction")
        geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(files_DEM_dir)

        # Create memory file for reprojection
        gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example)
        dataset_example = file_name_DEM_dir = gland

    # Open Array DEM dir as TIFF
    if Format_DEM_dir == "TIFF":
        file_name_DEM_dir = os.path.join(files_DEM_dir,"DIR_HydroShed_-_%s.tif" %resolution)
        DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir)
        geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info(file_name_DEM_dir)
        dataset_example = file_name_DEM_dir

    # Calculate Area per pixel in m2
    import watools.Functions.Start.Area_converter as AC
    DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir)

    ################################## DEM ##########################################

    # Open Array DEM as netCDF
    if Format_DEM == "NetCDF":
        file_DEM = os.path.join(files_DEM, "%d.nc" %year)
        DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation")

    # Open Array DEM as TIFF
    if Format_DEM == "TIFF":
        file_name_DEM = os.path.join(files_DEM,"DEM_HydroShed_m_%s.tif" %resolution)
        destDEM = RC.reproject_dataset_example(file_name_DEM, dataset_example, method=1)
        DataCube_DEM = destDEM.GetRasterBand(1).ReadAsArray()
        
    ################################ Landuse ##########################################

    # Open Array Basin as netCDF
    if Format_Basin == "NetCDF":
        file_Basin = os.path.join(files_Basin, "%d.nc" %year)
        DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse")
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Basin, "Landuse")
        dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg))
        destLU = RC.reproject_dataset_example(dest_basin, dataset_example, method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    # Open Array Basin as TIFF
    if Format_Basin == "TIFF":
        file_name_Basin = files_Basin
        destLU = RC.reproject_dataset_example(file_name_Basin, dataset_example, method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    ################################ Surface Runoff ##########################################

    # Open Array runoff as netCDF
    if Format_Runoff == "NetCDF":
        DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff", startdate, enddate)
        size_Z_example = DataCube_Runoff.shape[0]
        file_Runoff = os.path.join(files_Runoff, "%d.nc" %year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Runoff, "Surface_Runoff")
        DataCube_Runoff_CR = np.ones([size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Runoff_one = DataCube_Runoff[i,:,:]
            dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out, str(epsg))
            dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one, dataset_example, method=4)
            DataCube_Runoff_CR[i,:,:] = dest_Runoff.GetRasterBand(1).ReadAsArray()

        DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999

    # Open Array runoff as TIFF
    if Format_Runoff == "TIFF":
        DataCube_Runoff_CR = RC.Get3Darray_time_series_monthly(files_Runoff, startdate, enddate, Example_data = dataset_example)

    ################################ Surface Withdrawal ##########################################

    # Open Array Extraction as netCDF
    if Format_Extraction == "NetCDF":
        DataCube_Extraction = RC.Open_ncs_array(files_Extraction, "Surface_Withdrawal", startdate, enddate)
        size_Z_example = DataCube_Extraction.shape[0]
        file_Extraction = os.path.join(files_Extraction, "%d.nc" %year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Extraction, "Surface_Withdrawal")
        DataCube_Extraction_CR = np.ones([size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Extraction_one = DataCube_Extraction[i,:,:]
            dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one, geo_out, str(epsg))
            dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one, dataset_example, method=4)
            DataCube_Extraction_CR[i,:,:] = dest_Extraction.GetRasterBand(1).ReadAsArray()

        DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999

    # Open Array Extraction as TIFF
    if Format_Extraction == "TIFF":
        DataCube_Extraction_CR = RC.Get3Darray_time_series_monthly(files_Extraction, startdate, enddate, Example_data = dataset_example)

    ################################ Create input netcdf ##########################################
    # Save data in one NetCDF file
    geo_out_example = np.array(geo_out_example)

    # Latitude and longitude
    lon_ls = np.arange(size_X_example)*geo_out_example[1]+geo_out_example[0] + 0.5 * geo_out_example[1]
    lat_ls = np.arange(size_Y_example)*geo_out_example[5]+geo_out_example[3] - 0.5 * geo_out_example[5]

    lat_n = len(lat_ls)
    lon_n = len(lon_ls)

    # Create NetCDF file
    nc_file = netCDF4.Dataset(input_nc, 'w')
    nc_file.set_fill_on()

    # Create dimensions
    lat_dim = nc_file.createDimension('latitude', lat_n)
    lon_dim = nc_file.createDimension('longitude', lon_n)

    # Create NetCDF variables
    crso = nc_file.createVariable('crs', 'i4')
    crso.long_name = 'Lon/Lat Coords in WGS84'
    crso.standard_name = 'crs'
    crso.grid_mapping_name = 'latitude_longitude'
    crso.projection = epsg_example
    crso.longitude_of_prime_meridian = 0.0
    crso.semi_major_axis = 6378137.0
    crso.inverse_flattening = 298.257223563
    crso.geo_reference = geo_out_example

    lat_var = nc_file.createVariable('latitude', 'f8', ('latitude',))
    lat_var.units = 'degrees_north'
    lat_var.standard_name = 'latitude'
    lat_var.pixel_size = geo_out_example[5]

    lon_var = nc_file.createVariable('longitude', 'f8', ('longitude',))
    lon_var.units = 'degrees_east'
    lon_var.standard_name = 'longitude'
    lon_var.pixel_size = geo_out_example[1]

    Dates = pd.date_range(startdate,enddate,freq = 'MS')
    time_or=np.zeros(len(Dates))
    i = 0
    for Date in Dates:
        time_or[i] = Date.toordinal()
        i += 1
    nc_file.createDimension('time', None)
    timeo = nc_file.createVariable('time', 'f4', ('time',))
    timeo.units = 'Monthly'
    timeo.standard_name = 'time'

    # Variables
    demdir_var = nc_file.createVariable('demdir', 'i',
                                           ('latitude', 'longitude'),
                                           fill_value=-9999)
    demdir_var.long_name = 'Flow Direction Map'
    demdir_var.grid_mapping = 'crs'

    dem_var = nc_file.createVariable('dem', 'f8',
                                           ('latitude', 'longitude'),
                                           fill_value=-9999)
    dem_var.long_name = 'Altitude'
    dem_var.units = 'meters'
    dem_var.grid_mapping = 'crs'

    basin_var = nc_file.createVariable('basin', 'i',
                                           ('latitude', 'longitude'),
                                           fill_value=-9999)
    basin_var.long_name = 'Altitude'
    basin_var.units = 'meters'
    basin_var.grid_mapping = 'crs'

    area_var = nc_file.createVariable('area', 'f8',
                                           ('latitude', 'longitude'),
                                           fill_value=-9999)
    area_var.long_name = 'area in squared meters'
    area_var.units = 'squared_meters'
    area_var.grid_mapping = 'crs'

    runoff_var = nc_file.createVariable('Runoff_M', 'f8',
                                   ('time', 'latitude', 'longitude'),
                                   fill_value=-9999)
    runoff_var.long_name = 'Runoff'
    runoff_var.units = 'm3/month'
    runoff_var.grid_mapping = 'crs'

    extraction_var = nc_file.createVariable('Extraction_M', 'f8',
                                    ('time', 'latitude', 'longitude'),
                                    fill_value=-9999)
    extraction_var.long_name = 'Surface water Extraction'
    extraction_var.units = 'm3/month'
    extraction_var.grid_mapping = 'crs'


    # Load data
    lat_var[:] = lat_ls
    lon_var[:] = lon_ls
    timeo[:] = time_or

    # Static variables
    demdir_var[:, :] = DataCube_DEM_dir[:, :]
    dem_var[:, :] = DataCube_DEM[:, :]
    basin_var[:, :] = DataCube_Basin[:, :]
    area_var[:, :] = DataCube_Area[:, :]
    for i in range(len(Dates)):
        runoff_var[i,:,:] = DataCube_Runoff_CR[i,:,:]
    for i in range(len(Dates)):
        extraction_var[i,:,:] = DataCube_Extraction_CR[i,:,:]

    # Close file
    nc_file.close()
    return()
def Run(input_nc, output_nc):

    # Extract flow direction data from NetCDF file
    flow_directions = RC.Open_nc_array(input_nc, Var = 'demdir')

    # Open River Array
    Rivers = RC.Open_nc_array(output_nc, Var = 'rivers')

    # Open Accumulated Pixel Array
    Accumulated_Pixels = RC.Open_nc_array(output_nc, Var = 'accpix')

    # Open Routed discharge Array
    Routed_Array = RC.Open_nc_array(output_nc, Var = 'discharge_natural')

    # Get the raster shape
    geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(input_nc)
    geo_out_example = np.array(geo_out_example)

    # Create a river array with a boundary of 1 pixel
    Rivers_bounds = np.zeros([size_Y_example+2, size_X_example+2])
    Rivers_bounds[1:-1,1:-1] = Rivers

    # Create a flow direction array with a boundary of 1 pixel
    flow_directions[flow_directions==0]=-32768
    flow_directions_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768
    flow_directions_bound[1:-1,1:-1] = flow_directions

    # Create ID Matrix
    y,x = np.indices((size_Y_example, size_X_example))
    ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y_example,size_X_example),mode='clip').reshape(x.shape))
    ID_Matrix_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768
    ID_Matrix_bound[1:-1,1:-1] = ID_Matrix + 1
    ID_Matrix_bound[flow_directions_bound==-32768]=-32768
    del  x, y

    # Empty total from and to arrays
    ID_to_total=np.array([])
    ID_from_total=np.array([])

    # The flow directions parameters of HydroSHED
    Directions = [1, 2, 4, 8, 16, 32, 64, 128]

    # Loop over the directions
    for Direction in Directions:

        # empty from and to arrays for 1 direction
        data_flow_to = np.zeros([size_Y_example + 2, size_X_example + 2])
        data_flow_from = np.zeros([size_Y_example + 2, size_X_example + 2])

        # Get the ID of only the rivers
        data_flow_to_ID = np.zeros([size_Y_example + 2, size_X_example + 2])
        data_flow_in = np.ones([size_Y_example + 2, size_X_example + 2])	* Rivers_bounds

        # Mask only one direction
        data_flow_from[flow_directions_bound == Direction] = data_flow_in[flow_directions_bound == Direction] * ID_Matrix_bound[flow_directions_bound == Direction]

        # Add the data flow to ID
        if Direction == 4:
            data_flow_to[1:,:] = data_flow_from[:-1,:]
        if Direction == 2:
            data_flow_to[1:,1:] = data_flow_from[:-1,:-1]
        if Direction == 1:
            data_flow_to[:,1:] = data_flow_from[:,:-1]
        if Direction == 128:
            data_flow_to[:-1,1:] = data_flow_from[1:,:-1]
        if Direction == 64:
            data_flow_to[:-1,:] = data_flow_from[1:,:]
        if Direction == 32:
            data_flow_to[:-1,:-1] = data_flow_from[1:,1:]
        if Direction == 16:
            data_flow_to[:,:-1] = data_flow_from[:,1:]
        if Direction == 8:
            data_flow_to[1:,:-1] = data_flow_from[:-1,1:]

        # mask out the no river pixels
        data_flow_to_ID[data_flow_to>0] = ID_Matrix_bound[data_flow_to>0]

        # Collect to and from arrays
        ID_from_total = np.append(ID_from_total,data_flow_from[data_flow_from!=0].ravel())
        ID_to_total = np.append(ID_to_total,data_flow_to_ID[data_flow_to_ID!=0].ravel())


    ######################## Define the starting point ############################

    # Open Basin area
    Basin = RC.Open_nc_array(input_nc, Var = 'basin')
    Basin = -1 * (Basin - 1)
    Basin_Buffer = RC.Create_Buffer(Basin, 8)
    Possible_End_Points = np.zeros(Basin.shape)
    Possible_End_Points[(Basin_Buffer + Rivers) == 2] = 1
    End_Points = [[0,0]]

    rows_col_possible_end_pixels = np.argwhere(Possible_End_Points == 1)
    #  Accumulated_Pixels_possible = ID_Matrix * Possible_End_Points

    for PosPix in rows_col_possible_end_pixels:
        Accumulated_Pixels_possible_Area = Accumulated_Pixels[PosPix[0]-1:PosPix[0]+2, PosPix[1]-1:PosPix[1]+2]
        Max_acc_possible_area = np.max(Accumulated_Pixels_possible_Area)
        middle_pixel = Accumulated_Pixels_possible_Area[1,1]
        if Max_acc_possible_area == middle_pixel:
            if flow_directions[PosPix[0],PosPix[1]] == -32768:
                acc_aux = np.copy(Accumulated_Pixels_possible_Area)
                acc_aux[1,1] = 0
                off_y = np.where(acc_aux == np.max(acc_aux))[1][0] - 1
                off_x = np.where(acc_aux == np.max(acc_aux))[0][0] - 1
                PosPix[0] = PosPix[0] + off_x
                PosPix[1] = PosPix[1] + off_y
            if End_Points == []:
                End_Points = PosPix
            else:
                End_Points = np.vstack([End_Points, PosPix])

    # Create an empty dictionary for the rivers
    River_dict = dict()

    # Create empty array for the loop
    ID_starts_next = []
    i = 0

    for End_Point in End_Points[1:]:

    # Define starting point
    # Max_Acc_Pix = np.nanmax(Accumulated_Pixels[ID_Matrix_bound[1:-1,1:-1]>0])
    # ncol, nrow = np.argwhere(Accumulated_Pixels==Max_Acc_Pix)[0]

    # Add Bounds
    # col = ncol + 1
    # row = nrow + 1

        col = End_Point[0] + 1
        row = End_Point[1] + 1

        ############################ Route the river ##################################

        # Get the ID of the starting point
        ID_starts = [ID_Matrix_bound[col,row]]


        # Keep going on till all the branches are looped
        while len(ID_starts) > 0:
            for ID_start in ID_starts:
                ID_start = int(ID_start)

                # Empty parameters for new starting point
                new = 0
                IDs = []

                # Add starting point
                Arrays_from = np.argwhere(ID_from_total[:] == ID_start)
                ID_from = ID_to_total[int(Arrays_from[0])]
                IDs = np.array([ID_from, ID_start])
                ID_start_now = ID_start

                # Keep going till the branch ends
                while new == 0:

                    Arrays_to = np.argwhere(ID_to_total[:] == ID_start)

                    # Add IDs to the river dictionary
                    if len(Arrays_to)>1 or len(Arrays_to) == 0:
                        River_dict[i] = IDs
                        i += 1
                        new = 1

                        # Define the next loop for the new branches
                        for j in range(0, len(Arrays_to)):
                            ID_starts_next = np.append(ID_starts_next,ID_from_total[int(Arrays_to[j])])

                        # If it was the last one then empty ID_start_next
                        if ID_start_now == ID_starts[-1]:
                            ID_starts = ID_starts_next
                            ID_starts_next = []

                    # Add pixel to tree for river dictionary
                    else:
                        ID_start = ID_from_total[Arrays_to[0]]
                        IDs = np.append(IDs, ID_start)

    ######################## Create dict distance and dict dem ####################

    # Extract DEM data from NetCDF file
    DEM = RC.Open_nc_array(input_nc, Var = 'dem')

    # Get the distance of a horizontal and vertical flow pixel (assuming it flows in a straight line)
    import watools.Functions.Start.Area_converter as AC
    vertical, horizontal = AC.Calc_dlat_dlon(geo_out_example,size_X_example, size_Y_example)

    # Calculate a diagonal flowing pixel (assuming it flos in a straight line)
    diagonal = np.power((np.square(vertical) + np.square(horizontal)),0.5)

    # Create empty distance array
    Distance = np.zeros([size_Y_example, size_X_example])

    # Fill in the distance array
    Distance[np.logical_or(flow_directions == 1,flow_directions == 16)] = horizontal[np.logical_or(flow_directions == 1,flow_directions == 16)]
    Distance[np.logical_or(flow_directions == 64,flow_directions == 4)] = vertical[np.logical_or(flow_directions == 64,flow_directions == 4)]
    Distance[np.logical_or(np.logical_or(np.logical_or(flow_directions == 32,flow_directions == 8),flow_directions == 128),flow_directions == 2)] = diagonal[np.logical_or(np.logical_or(np.logical_or(flow_directions == 32,flow_directions == 8),flow_directions == 128),flow_directions == 2)]

    # Create empty dicionaries for discharge, distance, and DEM
    Discharge_dict = dict()
    Distance_dict = dict()
    DEM_dict = dict()

    # Create empty arrays needed for the loop
    River_end = []
    River_ends = np.zeros([2,3])


    # Loop over the branches
    for River_number in range(0,len(River_dict)):

        # Get the pixels associated with the river section
        River = River_dict[River_number]
        i=1

        # Create empty arrays
        Distances_river = np.zeros([len(River)])
        DEM_river = np.zeros([len(River)])
        Discharge_river = np.zeros([len(River)])

        # for the first pixel get the previous pixel value from another branche
        row_start = np.argwhere(River_ends[:,0] == River[0])
        if len(row_start) < 1:
            Distances_river[0] = 0
            row, col = np.argwhere(ID_Matrix_bound == River[0])[0][:]
            DEM_river[0] = DEM[row - 1, col - 1]
            Discharge_river[0] = -9999

        else:
            Distances_river[0] = River_ends[row_start, 1]
            DEM_river[0] = River_ends[row_start, 2]
            row, col = np.argwhere(ID_Matrix_bound == River[0])[0][:]
            #Discharge_river[0] = Routed_Discharge[timestep, row - 1, col - 1]

        # For the other pixels get the value of the River ID pixel
        for River_part in River[1:]:
            row, col = np.argwhere(ID_Matrix_bound == River_part)[0][:]
            Distances_river[i] = Distance[row - 1, col - 1]
            DEM_river[i] = np.max([DEM_river[i-1],DEM[row - 1, col - 1]])
            #Discharge_river[i] = Routed_Discharge[timestep, row - 1, col - 1]

            if River_part == River[1] and Discharge_river[i-1] == -9999:
                Discharge_river[i - 1] = Discharge_river[i]

            i += 1

        # Write array in dictionary
        DEM_dict[River_number] = DEM_river
        Discharge_dict[River_number] = Discharge_river
        Distance_dict[River_number] = np.cumsum(Distances_river)

        # Save the last pixel value
        River_end[:] = [River_part , np.cumsum(Distances_river)[-1], DEM_river[-1]]
        River_ends = np.vstack((River_ends, River_end))


    ########################## Discharge Dictionary ###############################

    # Create ID Matrix
    y,x = np.indices((size_Y_example, size_X_example))
    ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y_example,size_X_example),mode='clip').reshape(x.shape))
    ID_Matrix_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768
    ID_Matrix_bound[1:-1,1:-1] = ID_Matrix + 1
    del  x, y

    # Create empty dicionaries for discharge, distance, and DEM
    Discharge_dict = dict()

    Amount_months = len(RC.Open_nc_array(input_nc, Var = 'time'))

    # Loop over the branches
    for River_number in range(0,len(River_dict)):

        # Get the pixels associated with the river section
        River = River_dict[River_number]
        i=0

        # Create empty arrays
        Discharge_river = np.zeros([Amount_months, len(River)])

        # For the other pixels get the value of the River ID pixel
        for River_part in River[:]:
            row, col = np.argwhere(ID_Matrix_bound == River_part)[0][:]
            Discharge_river[:,i] = Routed_Array[:, row - 1, col - 1]
            i += 1

        # Write array in dictionary
        Discharge_dict[River_number] = Discharge_river
        print(River_number)

    return(DEM_dict, River_dict, Distance_dict, Discharge_dict)
예제 #4
0
def Find_Area_Volume_Relation(region, input_JRC, input_nc):

    # Find relation between V and A

    import numpy as np
    import watools.General.raster_conversions as RC
    import watools.General.data_conversions as DC
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt

    def func(x, a, b):
        """
        This function is used for finding relation area and volume

        """
        return (a * x**b)

    def func3(x, a, b, c, d):
        """
        This function is used for finding relation area and volume

        """
        return (a * (x - c)**b + d)

    #Array, Geo_out = RC.clip_data(input_JRC,latlim=[14.528,14.985],lonlim =[35.810,36.005])
    Array, Geo_out = RC.clip_data(
        input_JRC,
        latlim=[region[2], region[3]],
        lonlim=[region[0], region[1]
                ])  # This reservoir was not filled when SRTM was taken
    size_Y = int(np.shape([Array])[-2])
    size_X = int(np.shape([Array])[-1])

    Water_array = np.zeros(np.shape(Array))
    buffer_zone = 4
    Array[Array > 0] = 1
    for i in range(0, size_Y):
        for j in range(0, size_X):
            Water_array[i, j] = np.max(Array[
                np.maximum(0, i -
                           buffer_zone):np.minimum(size_Y, i + buffer_zone +
                                                   1),
                np.maximum(0, j -
                           buffer_zone):np.minimum(size_X, j + buffer_zone +
                                                   1)])
    del Array

    # Open DEM and reproject
    DEM_Array = RC.Open_nc_array(input_nc, "dem")
    Geo_out_dem, proj_dem, size_X_dem, size_Y_dem, size_Z_dem, time = RC.Open_nc_info(
        input_nc)

    # Save Example as memory file
    dest_example = DC.Save_as_MEM(Water_array, Geo_out, projection='WGS84')
    dest_dem = DC.Save_as_MEM(DEM_Array, Geo_out_dem, projection='WGS84')

    # reproject DEM by using example
    dest_out = RC.reproject_dataset_example(dest_dem, dest_example, method=2)
    DEM = dest_out.GetRasterBand(1).ReadAsArray()

    # find DEM water heights
    DEM_water = np.zeros(np.shape(Water_array))
    DEM_water[Water_array != 1] = np.nan
    DEM_water[Water_array == 1.] = DEM[Water_array == 1.]

    # Get array with areas
    import watools.Functions.Start.Area_converter as Area
    dlat, dlon = Area.Calc_dlat_dlon(Geo_out, size_X, size_Y)
    area_in_m2 = dlat * dlon

    # find volume and Area
    min_DEM_water = int(np.round(np.nanmin(DEM_water)))
    max_DEM_water = int(np.round(np.nanmax(DEM_water)))

    Reservoir_characteristics = np.zeros([1, 5])
    i = 0

    for height in range(min_DEM_water + 1, max_DEM_water):
        DEM_water_below_height = np.zeros(np.shape(DEM_water))
        DEM_water[np.isnan(DEM_water)] = 1000000
        DEM_water_below_height[DEM_water < height] = 1
        pixels = np.sum(DEM_water_below_height)

        area = np.sum(DEM_water_below_height * area_in_m2)
        if height == min_DEM_water + 1:
            volume = 0.5 * area
            histogram = pixels
            Reservoir_characteristics[:] = [
                height, pixels, area, volume, histogram
            ]
        else:
            area_previous = Reservoir_characteristics[i, 2]
            volume_previous = Reservoir_characteristics[i, 3]
            volume = volume_previous + 0.5 * (
                area - area_previous) + 1 * area_previous
            histogram_previous = Reservoir_characteristics[i, 1]
            histogram = pixels - histogram_previous
            Reservoir_characteristics_one = [
                height, pixels, area, volume, histogram
            ]
            Reservoir_characteristics = np.append(
                Reservoir_characteristics, Reservoir_characteristics_one)
            i += 1
            Reservoir_characteristics = np.resize(Reservoir_characteristics,
                                                  (i + 1, 5))

    maxi = int(len(Reservoir_characteristics[:, 3]))

    # find minimum value for reservoirs height (DEM is same value if reservoir was already filled whe SRTM was created)
    Historgram = Reservoir_characteristics[:, 4]
    hist_mean = np.mean(Historgram)
    hist_std = np.std(Historgram)

    mini_tresh = hist_std * 5 + hist_mean

    Check_hist = np.zeros([len(Historgram)])
    Check_hist[Historgram > mini_tresh] = Historgram[Historgram > mini_tresh]
    if np.max(Check_hist) != 0.0:
        col = np.argwhere(Historgram == np.max(Check_hist))[0][0]
        mini = col + 1
    else:
        mini = 0

    fitted = 0

    # find starting point reservoirs
    V0 = Reservoir_characteristics[mini, 3]
    A0 = Reservoir_characteristics[mini, 2]

    # Calculate the best maxi reservoir characteristics, based on the normal V = a*x**b relation
    while fitted == 0:
        try:
            if mini == 0:
                popt1, pcov1 = curve_fit(
                    func, Reservoir_characteristics[mini:maxi, 2],
                    Reservoir_characteristics[mini:maxi, 3])
            else:
                popt1, pcov1 = curve_fit(
                    func, Reservoir_characteristics[mini:maxi, 2] - A0,
                    Reservoir_characteristics[mini:maxi, 3] - V0)
            fitted = 1
        except:
            maxi -= 1

        if maxi < mini:
            print('ERROR: was not able to find optimal fit')
            fitted = 1

    # Remove last couple of pixels of maxi
    maxi_end = int(np.round(maxi - 0.2 * (maxi - mini)))

    done = 0
    times = 0

    while done == 0 and times > 20 and maxi_end < mini:
        try:
            if mini == 0:
                popt, pcov = curve_fit(
                    func, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])
            else:
                popt, pcov = curve_fit(
                    func3, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])

        except:
            maxi_end = int(maxi)
            if mini == 0:
                popt, pcov = curve_fit(
                    func, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])
            else:
                popt, pcov = curve_fit(
                    func3, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])

        if mini == 0:
            plt.plot(Reservoir_characteristics[mini:maxi_end, 2],
                     Reservoir_characteristics[mini:maxi_end, 3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000)
            plt.plot(t, popt[0] * (t)**popt[1], 'g--')
            plt.axis([
                0,
                np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0,
                np.max(Reservoir_characteristics[mini:maxi_end, 3])
            ])
            plt.show()
            done = 1

        else:
            plt.plot(Reservoir_characteristics[mini:maxi_end, 2],
                     Reservoir_characteristics[mini:maxi_end, 3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000)
            plt.plot(t, popt[0] * (t - popt[2])**popt[1] + popt[3], 'g--')
            plt.axis([
                0,
                np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0,
                np.max(Reservoir_characteristics[mini:maxi_end, 3])
            ])
            plt.show()
            Volume_error = popt[3] / V0 * 100 - 100
            print('error Volume = %s percent' % Volume_error)
            print('error Area = %s percent' % (A0 / popt[2] * 100 - 100))

            if Volume_error < 30 and Volume_error > -30:
                done = 1
            else:
                times += 1
                maxi_end -= 1
                print('Another run is done in order to improve the result')

    if done == 0:
        popt = np.append(popt1, [A0, V0])

    if len(popt) == 2:
        popt = np.append(popt, [0, 0])

    return (popt)