def run(input_nc, Inflow_Text_Files): ''' This functions add inflow to the runoff dataset before the channel routing. The inflow must be a text file with a certain format. The first line of this format are the latitude and longitude. Hereafter for each line the time (ordinal time) and the inflow (m3/month) seperated with one space is defined. See example below: lat lon 733042 156225.12 733073 32511321.2 733102 212315.25 733133 2313266.554 ''' # General modules import numpy as np # Water Accounting modules import watools.General.raster_conversions as RC import watools.Functions.Start.Area_converter as Area Runoff = RC.Open_nc_array(input_nc, Var='Runoff_M') # Open information and open the Runoff array geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(input_nc) # Calculate the surface area of every pixel dlat, dlon = Area.Calc_dlat_dlon(geo_out, size_X, size_Y) area_in_m2 = dlat * dlon for Inflow_Text_File in Inflow_Text_Files: # Open the inlet text data Inlet = np.genfromtxt(Inflow_Text_File, dtype=None, delimiter=" ") # Read out the coordinates Coord = Inlet[0, :] Lon_coord = Coord[0] Lat_coord = Coord[1] # Search for the pixel lon_pix = int(np.ceil((float(Lon_coord) - geo_out[0]) / geo_out[1])) lat_pix = int(np.ceil((float(Lat_coord) - geo_out[3]) / geo_out[5])) # Add the value on top of the Runoff array for i in range(1, len(Inlet)): time = float(Inlet[i, 0]) time_step = np.argwhere(np.logical_and(Time >= time, Time <= time)) if len(time_step) > 0: time_step_array = int(time_step[0][0]) value_m3_month = float(Inlet[i, 1]) area_in_m2_pixel = area_in_m2[lat_pix, lon_pix] value_mm = (value_m3_month / area_in_m2_pixel) * 1000 Runoff[time_step_array, lat_pix, lon_pix] = Runoff[time_step_array, lat_pix, lon_pix] + value_mm return (Runoff)
def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction, startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction): # Define a year to get the epsg and geo Startdate_timestamp = pd.Timestamp(startdate) year = Startdate_timestamp.year ############################## Drainage Direction ##################################### # Open Array DEM dir as netCDF if Format_DEM_dir == "NetCDF": file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" %year) DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction") geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(files_DEM_dir) # Create memory file for reprojection gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example) dataset_example = file_name_DEM_dir = gland # Open Array DEM dir as TIFF if Format_DEM_dir == "TIFF": file_name_DEM_dir = os.path.join(files_DEM_dir,"DIR_HydroShed_-_%s.tif" %resolution) DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir) geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info(file_name_DEM_dir) dataset_example = file_name_DEM_dir # Calculate Area per pixel in m2 import watools.Functions.Start.Area_converter as AC DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir) ################################## DEM ########################################## # Open Array DEM as netCDF if Format_DEM == "NetCDF": file_DEM = os.path.join(files_DEM, "%d.nc" %year) DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation") # Open Array DEM as TIFF if Format_DEM == "TIFF": file_name_DEM = os.path.join(files_DEM,"DEM_HydroShed_m_%s.tif" %resolution) destDEM = RC.reproject_dataset_example(file_name_DEM, dataset_example, method=1) DataCube_DEM = destDEM.GetRasterBand(1).ReadAsArray() ################################ Landuse ########################################## # Open Array Basin as netCDF if Format_Basin == "NetCDF": file_Basin = os.path.join(files_Basin, "%d.nc" %year) DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse") geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Basin, "Landuse") dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg)) destLU = RC.reproject_dataset_example(dest_basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 # Open Array Basin as TIFF if Format_Basin == "TIFF": file_name_Basin = files_Basin destLU = RC.reproject_dataset_example(file_name_Basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 ################################ Surface Runoff ########################################## # Open Array runoff as netCDF if Format_Runoff == "NetCDF": DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff", startdate, enddate) size_Z_example = DataCube_Runoff.shape[0] file_Runoff = os.path.join(files_Runoff, "%d.nc" %year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Runoff, "Surface_Runoff") DataCube_Runoff_CR = np.ones([size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Runoff_one = DataCube_Runoff[i,:,:] dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out, str(epsg)) dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one, dataset_example, method=4) DataCube_Runoff_CR[i,:,:] = dest_Runoff.GetRasterBand(1).ReadAsArray() DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999 # Open Array runoff as TIFF if Format_Runoff == "TIFF": DataCube_Runoff_CR = RC.Get3Darray_time_series_monthly(files_Runoff, startdate, enddate, Example_data = dataset_example) ################################ Surface Withdrawal ########################################## # Open Array Extraction as netCDF if Format_Extraction == "NetCDF": DataCube_Extraction = RC.Open_ncs_array(files_Extraction, "Surface_Withdrawal", startdate, enddate) size_Z_example = DataCube_Extraction.shape[0] file_Extraction = os.path.join(files_Extraction, "%d.nc" %year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(file_Extraction, "Surface_Withdrawal") DataCube_Extraction_CR = np.ones([size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Extraction_one = DataCube_Extraction[i,:,:] dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one, geo_out, str(epsg)) dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one, dataset_example, method=4) DataCube_Extraction_CR[i,:,:] = dest_Extraction.GetRasterBand(1).ReadAsArray() DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999 # Open Array Extraction as TIFF if Format_Extraction == "TIFF": DataCube_Extraction_CR = RC.Get3Darray_time_series_monthly(files_Extraction, startdate, enddate, Example_data = dataset_example) ################################ Create input netcdf ########################################## # Save data in one NetCDF file geo_out_example = np.array(geo_out_example) # Latitude and longitude lon_ls = np.arange(size_X_example)*geo_out_example[1]+geo_out_example[0] + 0.5 * geo_out_example[1] lat_ls = np.arange(size_Y_example)*geo_out_example[5]+geo_out_example[3] - 0.5 * geo_out_example[5] lat_n = len(lat_ls) lon_n = len(lon_ls) # Create NetCDF file nc_file = netCDF4.Dataset(input_nc, 'w') nc_file.set_fill_on() # Create dimensions lat_dim = nc_file.createDimension('latitude', lat_n) lon_dim = nc_file.createDimension('longitude', lon_n) # Create NetCDF variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mapping_name = 'latitude_longitude' crso.projection = epsg_example crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_out_example lat_var = nc_file.createVariable('latitude', 'f8', ('latitude',)) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lat_var.pixel_size = geo_out_example[5] lon_var = nc_file.createVariable('longitude', 'f8', ('longitude',)) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' lon_var.pixel_size = geo_out_example[1] Dates = pd.date_range(startdate,enddate,freq = 'MS') time_or=np.zeros(len(Dates)) i = 0 for Date in Dates: time_or[i] = Date.toordinal() i += 1 nc_file.createDimension('time', None) timeo = nc_file.createVariable('time', 'f4', ('time',)) timeo.units = 'Monthly' timeo.standard_name = 'time' # Variables demdir_var = nc_file.createVariable('demdir', 'i', ('latitude', 'longitude'), fill_value=-9999) demdir_var.long_name = 'Flow Direction Map' demdir_var.grid_mapping = 'crs' dem_var = nc_file.createVariable('dem', 'f8', ('latitude', 'longitude'), fill_value=-9999) dem_var.long_name = 'Altitude' dem_var.units = 'meters' dem_var.grid_mapping = 'crs' basin_var = nc_file.createVariable('basin', 'i', ('latitude', 'longitude'), fill_value=-9999) basin_var.long_name = 'Altitude' basin_var.units = 'meters' basin_var.grid_mapping = 'crs' area_var = nc_file.createVariable('area', 'f8', ('latitude', 'longitude'), fill_value=-9999) area_var.long_name = 'area in squared meters' area_var.units = 'squared_meters' area_var.grid_mapping = 'crs' runoff_var = nc_file.createVariable('Runoff_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) runoff_var.long_name = 'Runoff' runoff_var.units = 'm3/month' runoff_var.grid_mapping = 'crs' extraction_var = nc_file.createVariable('Extraction_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) extraction_var.long_name = 'Surface water Extraction' extraction_var.units = 'm3/month' extraction_var.grid_mapping = 'crs' # Load data lat_var[:] = lat_ls lon_var[:] = lon_ls timeo[:] = time_or # Static variables demdir_var[:, :] = DataCube_DEM_dir[:, :] dem_var[:, :] = DataCube_DEM[:, :] basin_var[:, :] = DataCube_Basin[:, :] area_var[:, :] = DataCube_Area[:, :] for i in range(len(Dates)): runoff_var[i,:,:] = DataCube_Runoff_CR[i,:,:] for i in range(len(Dates)): extraction_var[i,:,:] = DataCube_Extraction_CR[i,:,:] # Close file nc_file.close() return()
def Run(input_nc, output_nc): # Extract flow direction data from NetCDF file flow_directions = RC.Open_nc_array(input_nc, Var = 'demdir') # Open River Array Rivers = RC.Open_nc_array(output_nc, Var = 'rivers') # Open Accumulated Pixel Array Accumulated_Pixels = RC.Open_nc_array(output_nc, Var = 'accpix') # Open Routed discharge Array Routed_Array = RC.Open_nc_array(output_nc, Var = 'discharge_natural') # Get the raster shape geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(input_nc) geo_out_example = np.array(geo_out_example) # Create a river array with a boundary of 1 pixel Rivers_bounds = np.zeros([size_Y_example+2, size_X_example+2]) Rivers_bounds[1:-1,1:-1] = Rivers # Create a flow direction array with a boundary of 1 pixel flow_directions[flow_directions==0]=-32768 flow_directions_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768 flow_directions_bound[1:-1,1:-1] = flow_directions # Create ID Matrix y,x = np.indices((size_Y_example, size_X_example)) ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y_example,size_X_example),mode='clip').reshape(x.shape)) ID_Matrix_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768 ID_Matrix_bound[1:-1,1:-1] = ID_Matrix + 1 ID_Matrix_bound[flow_directions_bound==-32768]=-32768 del x, y # Empty total from and to arrays ID_to_total=np.array([]) ID_from_total=np.array([]) # The flow directions parameters of HydroSHED Directions = [1, 2, 4, 8, 16, 32, 64, 128] # Loop over the directions for Direction in Directions: # empty from and to arrays for 1 direction data_flow_to = np.zeros([size_Y_example + 2, size_X_example + 2]) data_flow_from = np.zeros([size_Y_example + 2, size_X_example + 2]) # Get the ID of only the rivers data_flow_to_ID = np.zeros([size_Y_example + 2, size_X_example + 2]) data_flow_in = np.ones([size_Y_example + 2, size_X_example + 2]) * Rivers_bounds # Mask only one direction data_flow_from[flow_directions_bound == Direction] = data_flow_in[flow_directions_bound == Direction] * ID_Matrix_bound[flow_directions_bound == Direction] # Add the data flow to ID if Direction == 4: data_flow_to[1:,:] = data_flow_from[:-1,:] if Direction == 2: data_flow_to[1:,1:] = data_flow_from[:-1,:-1] if Direction == 1: data_flow_to[:,1:] = data_flow_from[:,:-1] if Direction == 128: data_flow_to[:-1,1:] = data_flow_from[1:,:-1] if Direction == 64: data_flow_to[:-1,:] = data_flow_from[1:,:] if Direction == 32: data_flow_to[:-1,:-1] = data_flow_from[1:,1:] if Direction == 16: data_flow_to[:,:-1] = data_flow_from[:,1:] if Direction == 8: data_flow_to[1:,:-1] = data_flow_from[:-1,1:] # mask out the no river pixels data_flow_to_ID[data_flow_to>0] = ID_Matrix_bound[data_flow_to>0] # Collect to and from arrays ID_from_total = np.append(ID_from_total,data_flow_from[data_flow_from!=0].ravel()) ID_to_total = np.append(ID_to_total,data_flow_to_ID[data_flow_to_ID!=0].ravel()) ######################## Define the starting point ############################ # Open Basin area Basin = RC.Open_nc_array(input_nc, Var = 'basin') Basin = -1 * (Basin - 1) Basin_Buffer = RC.Create_Buffer(Basin, 8) Possible_End_Points = np.zeros(Basin.shape) Possible_End_Points[(Basin_Buffer + Rivers) == 2] = 1 End_Points = [[0,0]] rows_col_possible_end_pixels = np.argwhere(Possible_End_Points == 1) # Accumulated_Pixels_possible = ID_Matrix * Possible_End_Points for PosPix in rows_col_possible_end_pixels: Accumulated_Pixels_possible_Area = Accumulated_Pixels[PosPix[0]-1:PosPix[0]+2, PosPix[1]-1:PosPix[1]+2] Max_acc_possible_area = np.max(Accumulated_Pixels_possible_Area) middle_pixel = Accumulated_Pixels_possible_Area[1,1] if Max_acc_possible_area == middle_pixel: if flow_directions[PosPix[0],PosPix[1]] == -32768: acc_aux = np.copy(Accumulated_Pixels_possible_Area) acc_aux[1,1] = 0 off_y = np.where(acc_aux == np.max(acc_aux))[1][0] - 1 off_x = np.where(acc_aux == np.max(acc_aux))[0][0] - 1 PosPix[0] = PosPix[0] + off_x PosPix[1] = PosPix[1] + off_y if End_Points == []: End_Points = PosPix else: End_Points = np.vstack([End_Points, PosPix]) # Create an empty dictionary for the rivers River_dict = dict() # Create empty array for the loop ID_starts_next = [] i = 0 for End_Point in End_Points[1:]: # Define starting point # Max_Acc_Pix = np.nanmax(Accumulated_Pixels[ID_Matrix_bound[1:-1,1:-1]>0]) # ncol, nrow = np.argwhere(Accumulated_Pixels==Max_Acc_Pix)[0] # Add Bounds # col = ncol + 1 # row = nrow + 1 col = End_Point[0] + 1 row = End_Point[1] + 1 ############################ Route the river ################################## # Get the ID of the starting point ID_starts = [ID_Matrix_bound[col,row]] # Keep going on till all the branches are looped while len(ID_starts) > 0: for ID_start in ID_starts: ID_start = int(ID_start) # Empty parameters for new starting point new = 0 IDs = [] # Add starting point Arrays_from = np.argwhere(ID_from_total[:] == ID_start) ID_from = ID_to_total[int(Arrays_from[0])] IDs = np.array([ID_from, ID_start]) ID_start_now = ID_start # Keep going till the branch ends while new == 0: Arrays_to = np.argwhere(ID_to_total[:] == ID_start) # Add IDs to the river dictionary if len(Arrays_to)>1 or len(Arrays_to) == 0: River_dict[i] = IDs i += 1 new = 1 # Define the next loop for the new branches for j in range(0, len(Arrays_to)): ID_starts_next = np.append(ID_starts_next,ID_from_total[int(Arrays_to[j])]) # If it was the last one then empty ID_start_next if ID_start_now == ID_starts[-1]: ID_starts = ID_starts_next ID_starts_next = [] # Add pixel to tree for river dictionary else: ID_start = ID_from_total[Arrays_to[0]] IDs = np.append(IDs, ID_start) ######################## Create dict distance and dict dem #################### # Extract DEM data from NetCDF file DEM = RC.Open_nc_array(input_nc, Var = 'dem') # Get the distance of a horizontal and vertical flow pixel (assuming it flows in a straight line) import watools.Functions.Start.Area_converter as AC vertical, horizontal = AC.Calc_dlat_dlon(geo_out_example,size_X_example, size_Y_example) # Calculate a diagonal flowing pixel (assuming it flos in a straight line) diagonal = np.power((np.square(vertical) + np.square(horizontal)),0.5) # Create empty distance array Distance = np.zeros([size_Y_example, size_X_example]) # Fill in the distance array Distance[np.logical_or(flow_directions == 1,flow_directions == 16)] = horizontal[np.logical_or(flow_directions == 1,flow_directions == 16)] Distance[np.logical_or(flow_directions == 64,flow_directions == 4)] = vertical[np.logical_or(flow_directions == 64,flow_directions == 4)] Distance[np.logical_or(np.logical_or(np.logical_or(flow_directions == 32,flow_directions == 8),flow_directions == 128),flow_directions == 2)] = diagonal[np.logical_or(np.logical_or(np.logical_or(flow_directions == 32,flow_directions == 8),flow_directions == 128),flow_directions == 2)] # Create empty dicionaries for discharge, distance, and DEM Discharge_dict = dict() Distance_dict = dict() DEM_dict = dict() # Create empty arrays needed for the loop River_end = [] River_ends = np.zeros([2,3]) # Loop over the branches for River_number in range(0,len(River_dict)): # Get the pixels associated with the river section River = River_dict[River_number] i=1 # Create empty arrays Distances_river = np.zeros([len(River)]) DEM_river = np.zeros([len(River)]) Discharge_river = np.zeros([len(River)]) # for the first pixel get the previous pixel value from another branche row_start = np.argwhere(River_ends[:,0] == River[0]) if len(row_start) < 1: Distances_river[0] = 0 row, col = np.argwhere(ID_Matrix_bound == River[0])[0][:] DEM_river[0] = DEM[row - 1, col - 1] Discharge_river[0] = -9999 else: Distances_river[0] = River_ends[row_start, 1] DEM_river[0] = River_ends[row_start, 2] row, col = np.argwhere(ID_Matrix_bound == River[0])[0][:] #Discharge_river[0] = Routed_Discharge[timestep, row - 1, col - 1] # For the other pixels get the value of the River ID pixel for River_part in River[1:]: row, col = np.argwhere(ID_Matrix_bound == River_part)[0][:] Distances_river[i] = Distance[row - 1, col - 1] DEM_river[i] = np.max([DEM_river[i-1],DEM[row - 1, col - 1]]) #Discharge_river[i] = Routed_Discharge[timestep, row - 1, col - 1] if River_part == River[1] and Discharge_river[i-1] == -9999: Discharge_river[i - 1] = Discharge_river[i] i += 1 # Write array in dictionary DEM_dict[River_number] = DEM_river Discharge_dict[River_number] = Discharge_river Distance_dict[River_number] = np.cumsum(Distances_river) # Save the last pixel value River_end[:] = [River_part , np.cumsum(Distances_river)[-1], DEM_river[-1]] River_ends = np.vstack((River_ends, River_end)) ########################## Discharge Dictionary ############################### # Create ID Matrix y,x = np.indices((size_Y_example, size_X_example)) ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y_example,size_X_example),mode='clip').reshape(x.shape)) ID_Matrix_bound = np.ones([size_Y_example+2, size_X_example+2]) * -32768 ID_Matrix_bound[1:-1,1:-1] = ID_Matrix + 1 del x, y # Create empty dicionaries for discharge, distance, and DEM Discharge_dict = dict() Amount_months = len(RC.Open_nc_array(input_nc, Var = 'time')) # Loop over the branches for River_number in range(0,len(River_dict)): # Get the pixels associated with the river section River = River_dict[River_number] i=0 # Create empty arrays Discharge_river = np.zeros([Amount_months, len(River)]) # For the other pixels get the value of the River ID pixel for River_part in River[:]: row, col = np.argwhere(ID_Matrix_bound == River_part)[0][:] Discharge_river[:,i] = Routed_Array[:, row - 1, col - 1] i += 1 # Write array in dictionary Discharge_dict[River_number] = Discharge_river print(River_number) return(DEM_dict, River_dict, Distance_dict, Discharge_dict)
def Find_Area_Volume_Relation(region, input_JRC, input_nc): # Find relation between V and A import numpy as np import watools.General.raster_conversions as RC import watools.General.data_conversions as DC from scipy.optimize import curve_fit import matplotlib.pyplot as plt def func(x, a, b): """ This function is used for finding relation area and volume """ return (a * x**b) def func3(x, a, b, c, d): """ This function is used for finding relation area and volume """ return (a * (x - c)**b + d) #Array, Geo_out = RC.clip_data(input_JRC,latlim=[14.528,14.985],lonlim =[35.810,36.005]) Array, Geo_out = RC.clip_data( input_JRC, latlim=[region[2], region[3]], lonlim=[region[0], region[1] ]) # This reservoir was not filled when SRTM was taken size_Y = int(np.shape([Array])[-2]) size_X = int(np.shape([Array])[-1]) Water_array = np.zeros(np.shape(Array)) buffer_zone = 4 Array[Array > 0] = 1 for i in range(0, size_Y): for j in range(0, size_X): Water_array[i, j] = np.max(Array[ np.maximum(0, i - buffer_zone):np.minimum(size_Y, i + buffer_zone + 1), np.maximum(0, j - buffer_zone):np.minimum(size_X, j + buffer_zone + 1)]) del Array # Open DEM and reproject DEM_Array = RC.Open_nc_array(input_nc, "dem") Geo_out_dem, proj_dem, size_X_dem, size_Y_dem, size_Z_dem, time = RC.Open_nc_info( input_nc) # Save Example as memory file dest_example = DC.Save_as_MEM(Water_array, Geo_out, projection='WGS84') dest_dem = DC.Save_as_MEM(DEM_Array, Geo_out_dem, projection='WGS84') # reproject DEM by using example dest_out = RC.reproject_dataset_example(dest_dem, dest_example, method=2) DEM = dest_out.GetRasterBand(1).ReadAsArray() # find DEM water heights DEM_water = np.zeros(np.shape(Water_array)) DEM_water[Water_array != 1] = np.nan DEM_water[Water_array == 1.] = DEM[Water_array == 1.] # Get array with areas import watools.Functions.Start.Area_converter as Area dlat, dlon = Area.Calc_dlat_dlon(Geo_out, size_X, size_Y) area_in_m2 = dlat * dlon # find volume and Area min_DEM_water = int(np.round(np.nanmin(DEM_water))) max_DEM_water = int(np.round(np.nanmax(DEM_water))) Reservoir_characteristics = np.zeros([1, 5]) i = 0 for height in range(min_DEM_water + 1, max_DEM_water): DEM_water_below_height = np.zeros(np.shape(DEM_water)) DEM_water[np.isnan(DEM_water)] = 1000000 DEM_water_below_height[DEM_water < height] = 1 pixels = np.sum(DEM_water_below_height) area = np.sum(DEM_water_below_height * area_in_m2) if height == min_DEM_water + 1: volume = 0.5 * area histogram = pixels Reservoir_characteristics[:] = [ height, pixels, area, volume, histogram ] else: area_previous = Reservoir_characteristics[i, 2] volume_previous = Reservoir_characteristics[i, 3] volume = volume_previous + 0.5 * ( area - area_previous) + 1 * area_previous histogram_previous = Reservoir_characteristics[i, 1] histogram = pixels - histogram_previous Reservoir_characteristics_one = [ height, pixels, area, volume, histogram ] Reservoir_characteristics = np.append( Reservoir_characteristics, Reservoir_characteristics_one) i += 1 Reservoir_characteristics = np.resize(Reservoir_characteristics, (i + 1, 5)) maxi = int(len(Reservoir_characteristics[:, 3])) # find minimum value for reservoirs height (DEM is same value if reservoir was already filled whe SRTM was created) Historgram = Reservoir_characteristics[:, 4] hist_mean = np.mean(Historgram) hist_std = np.std(Historgram) mini_tresh = hist_std * 5 + hist_mean Check_hist = np.zeros([len(Historgram)]) Check_hist[Historgram > mini_tresh] = Historgram[Historgram > mini_tresh] if np.max(Check_hist) != 0.0: col = np.argwhere(Historgram == np.max(Check_hist))[0][0] mini = col + 1 else: mini = 0 fitted = 0 # find starting point reservoirs V0 = Reservoir_characteristics[mini, 3] A0 = Reservoir_characteristics[mini, 2] # Calculate the best maxi reservoir characteristics, based on the normal V = a*x**b relation while fitted == 0: try: if mini == 0: popt1, pcov1 = curve_fit( func, Reservoir_characteristics[mini:maxi, 2], Reservoir_characteristics[mini:maxi, 3]) else: popt1, pcov1 = curve_fit( func, Reservoir_characteristics[mini:maxi, 2] - A0, Reservoir_characteristics[mini:maxi, 3] - V0) fitted = 1 except: maxi -= 1 if maxi < mini: print('ERROR: was not able to find optimal fit') fitted = 1 # Remove last couple of pixels of maxi maxi_end = int(np.round(maxi - 0.2 * (maxi - mini))) done = 0 times = 0 while done == 0 and times > 20 and maxi_end < mini: try: if mini == 0: popt, pcov = curve_fit( func, Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3]) else: popt, pcov = curve_fit( func3, Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3]) except: maxi_end = int(maxi) if mini == 0: popt, pcov = curve_fit( func, Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3]) else: popt, pcov = curve_fit( func3, Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3]) if mini == 0: plt.plot(Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3], 'ro') t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000) plt.plot(t, popt[0] * (t)**popt[1], 'g--') plt.axis([ 0, np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0, np.max(Reservoir_characteristics[mini:maxi_end, 3]) ]) plt.show() done = 1 else: plt.plot(Reservoir_characteristics[mini:maxi_end, 2], Reservoir_characteristics[mini:maxi_end, 3], 'ro') t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000) plt.plot(t, popt[0] * (t - popt[2])**popt[1] + popt[3], 'g--') plt.axis([ 0, np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0, np.max(Reservoir_characteristics[mini:maxi_end, 3]) ]) plt.show() Volume_error = popt[3] / V0 * 100 - 100 print('error Volume = %s percent' % Volume_error) print('error Area = %s percent' % (A0 / popt[2] * 100 - 100)) if Volume_error < 30 and Volume_error > -30: done = 1 else: times += 1 maxi_end -= 1 print('Another run is done in order to improve the result') if done == 0: popt = np.append(popt1, [A0, V0]) if len(popt) == 2: popt = np.append(popt, [0, 0]) return (popt)