def test_message(): endpoint = '/v2/assistants/{0}/sessions/{1}/message'.format( 'bogus_id', 'session_id') url = '{0}{1}'.format(base_url, endpoint) response = { 'output': { 'generic': [{ 'text': 'I did not understand that. I can help you get pizza, tell a joke or find a movie.', 'response_type': 'text' }], 'entities': [], 'intents': [{ 'confidence': 0.8521236419677736, 'intent': 'Weather' }] } } responses.add(responses.POST, url, body=json.dumps(response), status=200, content_type='application/json') service = watson_developer_cloud.AssistantV2(username='******', password='******', version='2017-02-03') message = service.message('bogus_id', 'session_id', input={ 'text': 'What\'s the weather like?' }).get_result() assert len(responses.calls) == 1 assert responses.calls[0].request.url.startswith(url) assert message == response
def create_assistant(): global assistant assistant = watson_developer_cloud.AssistantV2( username='******', password='******', version='2018-07-10', url='https://gateway.watsonplatform.net/assistant/api') assistant.set_detailed_response(True)
def test_create_session(): endpoint = '/v2/assistants/{0}/sessions'.format('bogus_id') url = '{0}{1}'.format(base_url, endpoint) response = {'session_id': 'session_id'} responses.add(responses.POST, url, body=json.dumps(response), status=200, content_type='application/json') service = watson_developer_cloud.AssistantV2(username='******', password='******', version='2017-02-03') session = service.create_session('bogus_id').get_result() assert len(responses.calls) == 1 assert responses.calls[0].request.url.startswith(url) assert session == response
# Samantha Eng import watson_developer_cloud # Set up Assistant service. service = watson_developer_cloud.AssistantV2( version='2018-09-20', username='******', password='******' #replace with API Key ) assistant_id = '4cde2101-84d4-460b-bbb1-bac49e5ce061' # replace with assistant ID # Create session. session_id = service.create_session( assistant_id=assistant_id).get_result()['session_id'] user_input = '' print("To leave the conversation with Jenny311, say 'bye' !") while user_input != 'bye': response = service.message(assistant_id, session_id, input={ 'text': user_input }).get_result() print(response['output']['generic'][0]['text']) user_input = input('>> ') print("Thanks for chatting with Jenny311!") # We're done, so we delete the session.
import speech_recognition as sr import watson_developer_cloud from toca_musica import Playlist from comandos_e_automatizacoes import Comandos from respostas import Resposta from watson_developer_cloud import AssistantV2 # ### CONFIGS ### hotword = 'talu' #Bot name with open('{YOUR_GOOGLE_API}') as credenciais_google: credenciais_google = credenciais_google.read() #Conect to Watson Assistant service = watson_developer_cloud.AssistantV2( iam_apikey='{YOUR_API_KEY}', version='2018-11-08', url='https://gateway.watsonplatform.net/assistant/api') assistant_id = '{YOUR_ASSISTANT_ID}' response = service.create_session(assistant_id=assistant_id).get_result() class Monitora(): def monitora_audio(self): while True: microfone = sr.Recognizer() with sr.Microphone() as source: print("\nEsperando o comando...") #Wait a command audio = microfone.listen(source)
import json import watson_developer_cloud ASSISTANT_ID="<Enter your ASSISTANT_ID>" assistant = watson_developer_cloud.AssistantV2( iam_apikey='<Enter your API key>', version='2018-11-08', url='<Enter your assistant url that you set while creating the assistant>'# eg:'https://gateway-lon.watsonplatform.net/assistant/api' for london server ) #creates a session with the api session = assistant.create_session("ASSISTANT_ID").get_result() print(json.dumps(session, indent=2)) #send your query to the api #response variable recieves the json object with the response from api and the intent and extent detected response = assistant.message( assistant_id='ASSISTANT_ID', session_id=session["session_id"], input={ 'message_type': 'text', 'text': 'When are you open' }
user = creds['username'] password = creds['password'] url = 'https://' + creds['host'] client = Cloudant(user, password, url=url, connect=True) db = client.create_database(db_name, throw_on_exists=False) appi_db = client.create_database(applications_db, throw_on_exists=False) # On IBM Cloud Cloud Foundry, get the port number from the environment variable PORT # When running this app on the local machine, default the port to 8000 port = int(os.getenv('PORT', 8000)) # Initialising IBM Services service = watson_developer_cloud.AssistantV2( iam_apikey='4ZTQ5aq-73YVWgTe2LMOlnMD_U580-6EnJZQKjAw9q6j', version='2018-11-08', url='https://gateway-lon.watsonplatform.net/assistant/api') discovery = DiscoveryV1( version="2019-01-01", iam_apikey='Kw54FJSoj89aoZePeYMKusCWHE9phIRtJF1OQ64JTYmm', url="https://gateway-lon.watsonplatform.net/discovery/api") # tone_analyzer = ToneAnalyzerV3( # version='2017-09-21', # iam_apikey='nmaZeOH66dY03tb8ctOIalQW9q1oylEIxC1XzbkC8wUj', # url='https://gateway-lon.watsonplatform.net/tone-analyzer/api' # ) # checking issue affecting the functionality on the cloud tone_analyzer = ToneAnalyzerV3(
from google.cloud import speech from google.cloud.speech import enums from google.cloud.speech import types from google.cloud import texttospeech import watson_developer_cloud import matplotlib.pyplot as plt # loading json and creating model # from keras.models import model_from_json bp = Blueprint('view', __name__) service = watson_developer_cloud.AssistantV2( iam_apikey='d7Gfh-2Zlm0vOGKjz067jZtTx8yM8C6Y0vrMmwH_05VT', version='2018-11-08', url='https://gateway.watsonplatform.net/assistant/api') # json_file = open('model.json', 'r') # loaded_model_json = json_file.read() # json_file.close() # loaded_model = model_from_json(loaded_model_json) # # load weights into new model # loaded_model.load_weights("saved_models/Emotion_Voice_Detection_Model.h5") # print("Loaded model from disk") @bp.route('/api/speech_to_text', methods=['GET']) def speech_to_text(): print('button pressed')