if __name__ == '__main__':
    global dt
    # figure out the correct dt length based on the tempo of the output wave you want
    dt = compute_dt(bpm)
    # read and parse each sample wave
    for i in range(1, len(sys.argv) - 2):
        #read in the wave file and unpack its data
        wave_data = waveIO.read_wav_file(sys.argv[i])
        wave_data = waveIO.unpack(wave_data)
        wave_time = len(wave_data) / sr

        note_length = dt * sr

        wave_chunks = split_wave(wave_data, int(note_length))

        #test_sample_wave(wave_chunks)

        for i in range(len(wave_chunks)):
            chunk = wave_chunks[i]
            if len(chunk) != int(note_length):
                continue

            store_note(chunk)
    print_notes()
    plot_notes()

    # read and parse the music file
    musicfile = sys.argv[-2]
    song = build_song(musicfile, dt)
    waveIO.write_wav_file(sys.argv[-1], waveIO.pack(song))

		wave_chunks = []

		#Instead of multiplying the entire wave by the windowing function, we can simply examine window-sized pieces of the wave at a time
		#counting by WINDOW_LENGTH*(1-OVERLAP_PERCENT) allows adjustment of what percent of each window overlaps with the next
		#Example: OVERLAP_PERCENT = 0 means the next window will start where the previous window ended
		#Example: OVERLAP_PERCENT = 0.5 means the next window will start at the halfway mark of the previous window
		#This is necessary when using nonrectangular window functions, to prevent loss of data
		for i in range(0, len(wave_data), int(WINDOW_LENGTH*(1-OVERLAP_PERCENT))):
			window = []
			window.extend(wave_data[i:i+WINDOW_LENGTH])
			#multiply by the window function
			window = WINDOW_FUNC(window)
			wave_chunks.append(window)
			
		for i in range(len(wave_chunks)):
			chunk = wave_chunks[i]
			if len(chunk) != WINDOW_LENGTH:
				continue

			store_note(chunk)
	print_notes()
	plot_notes()
	
	# read and parse the music file
	musicfile = sys.argv[-2]
	song = build_song(musicfile, WINDOW_LENGTH / float(sr))
	waveIO.write_wav_file(sys.argv[-1], waveIO.pack(song))

	
"A":440.,
"A#":466.16,
"B":493.88,
"C":261.63,
"C#":277.18,
"D":293.66,
"D#":311.13,
"E":329.63,
"F":349.23,
"F#":369.99,
"G":391.99,
"G#":415.31
}

freqs5 = {}
freqs6 = {}

note_length = 8938

if __name__ == '__main__':
	for note in freqs4:
		freqs5[note] = 2*freqs4[note]
		freqs6[note] = 4*freqs4[note]
	musicfile = sys.argv[1]
	musicwave = build_song(musicfile)
	data, freqs, bins, im = plt.specgram(musicwave, NFFT=2048, Fs=44100, noverlap=900)
	plt.ylim(0,800)
	plt.title("Spectrogram of analytic_furelise_hanning.wav")
	plt.show()
	waveIO.write_wav_file("analytic_furelise.wav", waveIO.pack(musicwave))
예제 #4
0
    "C": 261.63,
    "C#": 277.18,
    "D": 293.66,
    "D#": 311.13,
    "E": 329.63,
    "F": 349.23,
    "F#": 369.99,
    "G": 391.99,
    "G#": 415.31
}

freqs5 = {}
freqs6 = {}

note_length = 8938

if __name__ == '__main__':
    for note in freqs4:
        freqs5[note] = 2 * freqs4[note]
        freqs6[note] = 4 * freqs4[note]
    musicfile = sys.argv[1]
    musicwave = build_song(musicfile)
    data, freqs, bins, im = plt.specgram(musicwave,
                                         NFFT=2048,
                                         Fs=44100,
                                         noverlap=900)
    plt.ylim(0, 800)
    plt.title("Spectrogram of analytic_furelise_hanning.wav")
    plt.show()
    waveIO.write_wav_file("analytic_furelise.wav", waveIO.pack(musicwave))
plt.xlim(0,1000)
plt.xlabel("Frequency (Hz)")
plt.ylabel("Absolute value of FFT Magnitude, divided by N")
#plt.yscale("log")
plt.title("Power spectrum of sample wave")
plt.show()


data, freqs, bins, im = plt.specgram(t_sin, NFFT=NFFT, Fs=fs, noverlap=NFFT/2)
plt.title("Spectrogram, notes in reverse, window size = 1024, sr = 44100")
plt.ylabel("Frequency (Hz)")
plt.xlabel("Time (s)")
plt.ylim(0,800)
plt.show()
#print(data)
waveIO.write_wav_file("samplewave.wav", waveIO.pack(t_sin))


##############
# Now build a universal sample, with short sections for each note through a few octaves
t = numpy.arange(0, 0.5, dt)
big_sample = create_wave(440, t)
big_sample = numpy.append(big_sample, create_wave(261, t))
big_sample = numpy.append(big_sample, create_wave(277, t))
big_sample = numpy.append(big_sample, create_wave(293, t))
big_sample = numpy.append(big_sample, create_wave(311, t))
big_sample = numpy.append(big_sample, create_wave(329, t))
big_sample = numpy.append(big_sample, create_wave(349, t))
big_sample = numpy.append(big_sample, create_wave(369, t))
big_sample = numpy.append(big_sample, create_wave(391, t))
big_sample = numpy.append(big_sample, create_wave(415, t))
예제 #6
0
plt.ylabel("Absolute value of FFT Magnitude, divided by N")
#plt.yscale("log")
plt.title("Power spectrum of sample wave")
plt.show()

data, freqs, bins, im = plt.specgram(t_sin,
                                     NFFT=NFFT,
                                     Fs=fs,
                                     noverlap=NFFT / 2)
plt.title("Spectrogram, notes in reverse, window size = 1024, sr = 44100")
plt.ylabel("Frequency (Hz)")
plt.xlabel("Time (s)")
plt.ylim(0, 800)
plt.show()
#print(data)
waveIO.write_wav_file("samplewave.wav", waveIO.pack(t_sin))

##############
# Now build a universal sample, with short sections for each note through a few octaves
t = numpy.arange(0, 0.5, dt)
big_sample = create_wave(440, t)
big_sample = numpy.append(big_sample, create_wave(261, t))
big_sample = numpy.append(big_sample, create_wave(277, t))
big_sample = numpy.append(big_sample, create_wave(293, t))
big_sample = numpy.append(big_sample, create_wave(311, t))
big_sample = numpy.append(big_sample, create_wave(329, t))
big_sample = numpy.append(big_sample, create_wave(349, t))
big_sample = numpy.append(big_sample, create_wave(369, t))
big_sample = numpy.append(big_sample, create_wave(391, t))
big_sample = numpy.append(big_sample, create_wave(415, t))
big_sample = numpy.append(big_sample, create_wave(466.16, t))