def main(): parser = argparse.ArgumentParser() # path setting parser.add_argument("--waveforms", required=True, type=str, help="directory or list of wav files") parser.add_argument("--feats", required=True, type=str, help="directory or list of aux feat files") parser.add_argument("--stats", required=True, type=str, help="hdf5 file including statistics") parser.add_argument("--expdir", required=True, type=str, help="directory to save the model") # network structure setting parser.add_argument("--n_quantize", default=256, type=int, help="number of quantization") parser.add_argument("--n_aux", default=28, type=int, help="number of dimension of aux feats") parser.add_argument("--n_resch", default=512, type=int, help="number of channels of residual output") parser.add_argument("--n_skipch", default=256, type=int, help="number of channels of skip output") parser.add_argument("--dilation_depth", default=10, type=int, help="depth of dilation") parser.add_argument("--dilation_repeat", default=1, type=int, help="number of repeating of dilation") parser.add_argument("--kernel_size", default=2, type=int, help="kernel size of dilated causal convolution") parser.add_argument("--upsampling_factor", default=0, type=int, help="upsampling factor of aux features" "(if set 0, do not apply)") parser.add_argument("--use_speaker_code", default=False, type=strtobool, help="flag to use speaker code") # network training setting parser.add_argument("--lr", default=1e-4, type=float, help="learning rate") parser.add_argument("--weight_decay", default=0.0, type=float, help="weight decay coefficient") parser.add_argument( "--batch_length", default=20000, type=int, help="batch length (if set 0, utterance batch will be used)") parser.add_argument( "--batch_size", default=1, type=int, help="batch size (if use utterance batch, batch_size will be 1.") parser.add_argument("--iters", default=200000, type=int, help="number of iterations") # other setting parser.add_argument("--checkpoints", default=10000, type=int, help="how frequent saving model") parser.add_argument("--intervals", default=100, type=int, help="log interval") parser.add_argument("--seed", default=1, type=int, help="seed number") parser.add_argument("--resume", default=None, nargs="?", type=str, help="model path to restart training") parser.add_argument("--n_gpus", default=1, type=int, help="number of gpus") parser.add_argument("--verbose", default=1, type=int, help="log level") args = parser.parse_args() # set log level if args.verbose == 1: logging.basicConfig( level=logging.INFO, format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S') elif args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S') else: logging.basicConfig( level=logging.WARN, format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S') logging.warn("logging is disabled.") # show argmument for key, value in vars(args).items(): logging.info("%s = %s" % (key, str(value))) # make experimental directory if not os.path.exists(args.expdir): os.makedirs(args.expdir) # fix seed os.environ['PYTHONHASHSEED'] = str(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # save args as conf torch.save(args, args.expdir + "/model.conf") # # define network model = WaveNet(n_quantize=args.n_quantize, n_aux=args.n_aux, n_resch=args.n_resch, n_skipch=args.n_skipch, dilation_depth=args.dilation_depth, dilation_repeat=args.dilation_repeat, kernel_size=args.kernel_size, upsampling_factor=args.upsampling_factor) logging.info(model) model.apply(initialize) model.train() if args.n_gpus > 1: device_ids = range(args.n_gpus) model = torch.nn.DataParallel(model, device_ids) model.receptive_field = model.module.receptive_field if args.n_gpus > args.batch_size: logging.warn("batch size is less than number of gpus.") # define loss and optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) criterion = nn.CrossEntropyLoss() # define transforms scaler = StandardScaler() scaler.mean_ = read_hdf5(args.stats, "/mean") scaler.scale_ = read_hdf5(args.stats, "/scale") wav_transform = transforms.Compose( [lambda x: encode_mu_law(x, args.n_quantize)]) feat_transform = transforms.Compose([lambda x: scaler.transform(x)]) # define generator if os.path.isdir(args.waveforms): filenames = sorted( find_files(args.waveforms, "*.wav", use_dir_name=False)) wav_list = [args.waveforms + "/" + filename for filename in filenames] feat_list = [ args.feats + "/" + filename.replace(".wav", ".h5") for filename in filenames ] elif os.path.isfile(args.waveforms): wav_list = read_txt(args.waveforms) feat_list = read_txt(args.feats) else: logging.error("--waveforms should be directory or list.") sys.exit(1) assert len(wav_list) == len(feat_list) logging.info("number of training data = %d." % len(wav_list)) generator = train_generator(wav_list, feat_list, receptive_field=model.receptive_field, batch_length=args.batch_length, batch_size=args.batch_size, wav_transform=wav_transform, feat_transform=feat_transform, shuffle=True, upsampling_factor=args.upsampling_factor, use_speaker_code=args.use_speaker_code) # charge minibatch in queue while not generator.queue.full(): time.sleep(0.1) # resume if args.resume is not None and len(args.resume) != 0: checkpoint = torch.load( args.resume, map_location=lambda storage, loc: storage.cuda(0)) if args.n_gpus > 1: model.module.load_state_dict(checkpoint["model"]) else: model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) iterations = checkpoint["iterations"] logging.info("restored from %d-iter checkpoint." % iterations) else: iterations = 0 # send to gpu if torch.cuda.is_available(): model.cuda() criterion.cuda() else: logging.error("gpu is not available. please check the setting.") sys.exit(1) # train loss = 0 total = 0 for i in six.moves.range(iterations, args.iters): start = time.time() (batch_x, batch_h), batch_t = generator.next() batch_output = model(batch_x, batch_h) batch_loss = criterion( batch_output[:, model.receptive_field:].contiguous().view( -1, args.n_quantize), batch_t[:, model.receptive_field:].contiguous().view(-1)) optimizer.zero_grad() batch_loss.backward() optimizer.step() loss += batch_loss.data[0] total += time.time() - start logging.debug("batch loss = %.3f (%.3f sec / batch)" % (batch_loss.data[0], time.time() - start)) # report progress if (i + 1) % args.intervals == 0: logging.info( "(iter:%d) average loss = %.6f (%.3f sec / batch)" % (i + 1, loss / args.intervals, total / args.intervals)) logging.info( "estimated required time = " "{0.days:02}:{0.hours:02}:{0.minutes:02}:{0.seconds:02}". format( relativedelta(seconds=int((args.iters - (i + 1)) * (total / args.intervals))))) loss = 0 total = 0 # save intermidiate model if (i + 1) % args.checkpoints == 0: if args.n_gpus > 1: save_checkpoint(args.expdir, model.module, optimizer, i + 1) else: save_checkpoint(args.expdir, model, optimizer, i + 1) # save final model if args.n_gpus > 1: torch.save({"model": model.module.state_dict()}, args.expdir + "/checkpoint-final.pkl") else: torch.save({"model": model.state_dict()}, args.expdir + "/checkpoint-final.pkl") logging.info("final checkpoint created.")
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, iters_per_checkpoint, batch_size, seed, checkpoint_path): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = CrossEntropyLoss() model = WaveNet(**wavenet_config).cpu() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 print(f"receptive_field: {model.receptive_field()}") trainset = WavenetDataset( dataset_file='data/dataset.npz', item_length=model.receptive_field() + 1000 + model.output_length - 1, target_length=model.output_length, file_location='data/', test_stride=500, ) print(trainset._length) print('the dataset has ' + str(len(trainset)) + ' items') train_loader = DataLoader( trainset, batch_size=batch_size, shuffle=True, pin_memory=False, ) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== start = time.time() for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() y, target = batch y = to_gpu(y).float() target = to_gpu(target) y_pred = model((None, y)) loss = criterion(y_pred[:, :, -model.output_length:], target) loss.backward() optimizer.step() print("{}:\t{:.9f}".format(iteration, loss)) print_etr(start, total_iterations=(epochs - epoch_offset) * len(train_loader), current_iteration=epoch * len(train_loader) + i + 1) writer.add_scalar('Loss/train', loss, global_step=iteration) if (iteration % iters_per_checkpoint == 0): y_choice = y_pred[0].detach().cpu().transpose(0, 1) y_prob = F.softmax(y_choice, dim=1) y_prob_collapsed = torch.multinomial(y_prob, num_samples=1).squeeze(1) y_pred_audio = mu_law_decode_numpy(y_prob_collapsed.numpy(), model.n_out_channels) import torchaudio y_audio = mu_law_decode_numpy(y.numpy(), model.n_out_channels) torchaudio.save("test_in.wav", torch.tensor(y_audio), 16000) torchaudio.save("test_out.wav", torch.tensor(y_pred_audio), 16000) writer.add_audio('Audio', y_pred_audio, global_step=iteration, sample_rate=data_config['sampling_rate']) checkpoint_path = "{}/wavenet_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) writer.flush() iteration += 1