예제 #1
0
def parse_range_image_and_camera_projection(frame):
  """Parse range images and camera projections given a frame.

  Args:
     frame: open dataset frame proto
  Returns:
     range_images: A dict of {laser_name,
       [range_image_first_return, range_image_second_return]}.
     camera_projections: A dict of {laser_name,
       [camera_projection_from_first_return,
        camera_projection_from_second_return]}.
    range_image_top_pose: range image pixel pose for top lidar.
  """
  range_images = {}
  camera_projections = {}
  range_image_top_pose = None
  for laser in frame.lasers:
    if len(laser.ri_return1.range_image_compressed) > 0:
      # use tf.io.decode_compressed() if TF 2.0
      range_image_str_tensor = tf.decode_compressed(
          laser.ri_return1.range_image_compressed, 'ZLIB')
      ri = open_dataset.MatrixFloat()
      ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
      range_images[laser.name] = [ri]

      if laser.name == open_dataset.LaserName.TOP:
        # use tf.io.decode_compressed() if TF 2.0
        range_image_top_pose_str_tensor = tf.decode_compressed(
            laser.ri_return1.range_image_pose_compressed, 'ZLIB')
        range_image_top_pose = open_dataset.MatrixFloat()
        range_image_top_pose.ParseFromString(
            bytearray(range_image_top_pose_str_tensor.numpy()))

      # use tf.io.decode_compressed() if TF 2.0
      camera_projection_str_tensor = tf.decode_compressed(
          laser.ri_return1.camera_projection_compressed, 'ZLIB')
      cp = open_dataset.MatrixInt32()
      cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
      camera_projections[laser.name] = [cp]
    if len(laser.ri_return2.range_image_compressed) > 0:
      # use tf.io.decode_compressed() if TF 2.0
      range_image_str_tensor = tf.decode_compressed(
          laser.ri_return2.range_image_compressed, 'ZLIB')
      ri = open_dataset.MatrixFloat()
      ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
      range_images[laser.name].append(ri)

      # use tf.io.decode_compressed() if TF 2.0
      camera_projection_str_tensor = tf.decode_compressed(
          laser.ri_return2.camera_projection_compressed, 'ZLIB')
      cp = open_dataset.MatrixInt32()
      cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
      camera_projections[laser.name].append(cp)
  return range_images, camera_projections, range_image_top_pose 
예제 #2
0
def parse_range_image_and_camera_projection(frame):
    range_images = {}
    camera_projections = {}
    range_image_top_pose = None

    for laser in frame.lasers:

        if len(laser.ri_return1.range_image_compressed) > 0:
            range_image_str_tensor = tf.io.decode_compressed(laser.ri_return1.range_image_compressed, 'ZLIB')
            ri = open_dataset.MatrixFloat()
            ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
            range_images[laser.name] = [ri]

            if laser.name == open_dataset.LaserName.TOP:
                range_image_top_pose_str_tensor = tf.io.decode_compressed(laser.ri_return1.range_image_pose_compressed, 'ZLIB')
                range_image_top_pose = open_dataset.MatrixFloat()
                range_image_top_pose.ParseFromString(bytearray(range_image_top_pose_str_tensor.numpy()))

            camera_projection_str_tensor = tf.io.decode_compressed(laser.ri_return1.camera_projection_compressed, 'ZLIB')
            cp = open_dataset.MatrixInt32()
            cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
            camera_projections[laser.name] = [cp]

        if len(laser.ri_return2.range_image_compressed) > 0:
            range_image_str_tensor = tf.io.decode_compressed(laser.ri_return2.range_image_compressed, 'ZLIB')
            ri = open_dataset.MatrixFloat()
            ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
            range_images[laser.name].append(ri)

            camera_projection_str_tensor = tf.io.decode_compressed(laser.ri_return2.camera_projection_compressed, 'ZLIB')
            cp = open_dataset.MatrixInt32()
            cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
            camera_projections[laser.name].append(cp)


    return range_images, camera_projections, range_image_top_pose
예제 #3
0
파일: waymo.py 프로젝트: ofirbb/Hub
    def extract_record_batch(self, ds: hub.Dataset, arr: Dict[str, np.ndarray], index: int, batch) -> int:
        cnt = 0
        for key in ['images', 'lasers_range_image', 'lasers_camera_projection']:
            arr[key] = np.zeros(ds[key].chunk, ds[key].dtype)

        for i, sample in enumerate(batch):
            t1 = time.time()
            cnt += 1
            
            frame = open_dataset.Frame()
            frame.ParseFromString(bytearray(sample.numpy()))
            
            key = 'images'
            arrkey = arr[key]
            for image in frame.images:
                if image.name > 0:
                    img = np.array(Image.open(io.BytesIO(bytearray(image.image))))
                    arrkey[i, image.name - 1, :img.shape[0], :img.shape[1]] = img
                     

            arrkey = arr['labels'][index + i]
            for j, key in enumerate(['camera_labels', 'projected_lidar_labels']):    
                for image in getattr(frame, key):
                    if image.name > 0:
                        _count = 0
                        for l, label in enumerate(image.labels):
                            box = label.box
                            x = np.array([box.center_x, box.center_y, box.center_z, box.length, box.width, box.height, box.heading])
                            arrkey[5 * j + image.name, l] = x
                            _count += 1
                        
                        ds['labels'].darray[index + i][5 * j + image.name] = (_count, 7)
            
            key = 'laser_labels'
            _count = 0
            for j, label in enumerate(getattr(frame, key)):
                box = label.box
                x = np.array([box.center_x, box.center_y, box.center_z, box.length, box.width, box.height, box.heading])
                arrkey[0, j] = x
                _count += 1
            
            ds['labels'].darray[index + i][0] = (_count, 7)

            for kid, key in enumerate(['lasers_range_image', 'lasers_camera_projection']):
                arrkey = arr[key]
                for laser in frame.lasers:
                    if laser.name > 0:
                        for j, ri in enumerate([laser.ri_return1, laser.ri_return2]):
                            attr_name = '_'.join(key.split('_')[1:]) + '_compressed'
                            data = getattr(ri, attr_name)
                            mt = open_dataset.MatrixFloat() if kid == 0 else open_dataset.MatrixInt32()
                            mt.ParseFromString(zlib.decompress(data))
                            
                            _arr = np.reshape(
                                np.array(mt.data), 
                                tuple(mt.shape.dims),
                                ) 

                            arrkey[i, laser.name - 1, j, :_arr.shape[0], :_arr.shape[1]] = _arr
                            # print(f'{laser.name - 1}, {key}: {_arr.shape}')
            t2 = time.time()

        return cnt