예제 #1
0
def get_number_of_monitors():
    gt.ensure_qtapp()
    desktop = QtWidgets.QDesktopWidget()
    if hasattr(desktop, 'numScreens'):
        n = desktop.numScreens()
    else:
        n = desktop.screenCount()
    return n
예제 #2
0
    def edit_config(self, event):
        from wbia import guitool

        guitool.ensure_qtapp()
        from wbia.guitool import PrefWidget2

        self.widget = PrefWidget2.EditConfigWidget(config=self.config)
        self.widget.show()
예제 #3
0
def _init_gui(activate=True):
    from wbia import guitool

    if NOT_QUIET:
        logger.info('[main] _init_gui()')
    guitool.ensure_qtapp()
    from wbia.gui import guiback

    back = guiback.MainWindowBackend()
    if activate:
        guitool.activate_qwindow(back.mainwin)
    return back
예제 #4
0
def get_monitor_geometries():
    gt.ensure_qtapp()
    monitor_geometries = {}
    desktop = QtWidgets.QDesktopWidget()
    if hasattr(desktop, 'numScreens'):
        n = desktop.numScreens()
    else:
        n = desktop.screenCount()
    for screenx in range(n):
        rect = desktop.availableGeometry(screen=screenx)
        geom = (rect.x(), rect.y(), rect.width(), rect.height())
        monitor_geometries[screenx] = geom
    return monitor_geometries
예제 #5
0
def fix_splits_interaction(ibs):
    """
    python -m wbia fix_splits_interaction --show

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from wbia.other.dbinfo import *  # NOQA
        >>> import wbia
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import wbia.guitool as gt
        >>> gt.ensure_qtapp()
        >>> win = fix_splits_interaction(ibs)
        >>> ut.quit_if_noshow()
        >>> import wbia.plottool as pt
        >>> gt.qtapp_loop(qwin=win)
    """
    split_props = {'splitcase', 'photobomb'}
    all_annot_groups = ibs._annot_groups(
        ibs.group_annots_by_name(ibs.get_valid_aids())[0])
    all_has_split = [
        len(split_props.intersection(ut.flatten(tags))) > 0
        for tags in all_annot_groups.match_tags
    ]
    tosplit_annots = ut.compress(all_annot_groups.annots_list, all_has_split)

    tosplit_annots = ut.take(tosplit_annots,
                             ut.argsort(ut.lmap(len, tosplit_annots)))[::-1]
    if ut.get_argflag('--reverse'):
        tosplit_annots = tosplit_annots[::-1]
    logger.info('len(tosplit_annots) = %r' % (len(tosplit_annots), ))
    aids_list = [a.aids for a in tosplit_annots]

    from wbia.algo.graph import graph_iden
    from wbia.viz import viz_graph2
    import wbia.guitool as gt
    import wbia.plottool as pt

    pt.qt4ensure()
    gt.ensure_qtapp()

    for aids in ut.InteractiveIter(aids_list):
        infr = graph_iden.AnnotInference(ibs, aids)
        infr.initialize_graph()
        win = viz_graph2.AnnotGraphWidget(infr=infr,
                                          use_image=False,
                                          init_mode='rereview')
        win.populate_edge_model()
        win.show()
    return win
예제 #6
0
    def start_qt_interface(infr, loop=True):
        import wbia.guitool as gt
        from wbia.viz.viz_graph2 import AnnotGraphWidget
        from wbia.plottool import abstract_interaction
        import wbia.plottool as pt

        pt.qtensure()
        gt.ensure_qtapp()
        # win = AnnotGraphWidget(infr=infr, use_image=False, init_mode='review')
        win = AnnotGraphWidget(infr=infr, use_image=False, init_mode=None)
        abstract_interaction.register_interaction(win)
        if loop:
            gt.qtapp_loop(qwin=win, freq=10)
        else:
            win.show()
        return win
예제 #7
0
def guiselect_workdir():
    """ Prompts the user to specify a work directory """
    from wbia import guitool

    guitool.ensure_qtapp()
    # Gui selection
    work_dir = guitool.select_directory('Select a work directory')

    # Make sure selection is ok
    if not exists(work_dir):
        try_again = guitool.user_option(
            paremt=None,
            msg='Directory %r does not exist.' % work_dir,
            title='get work dir failed',
            options=['Try Again'],
            use_cache=False,
        )
        if try_again == 'Try Again':
            return guiselect_workdir()
    return work_dir
예제 #8
0
def get_monitor_geom(monitor_num=0):
    r"""
    Args:
        monitor_num (int): (default = 0)

    Returns:
        tuple: geom

    CommandLine:
        python -m wbia.plottool.screeninfo get_monitor_geom --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.plottool.screeninfo import *  # NOQA
        >>> monitor_num = 0
        >>> geom = get_monitor_geom(monitor_num)
        >>> result = ('geom = %s' % (ut.repr2(geom),))
        >>> print(result)
    """
    gt.ensure_qtapp()
    desktop = QtWidgets.QDesktopWidget()
    rect = desktop.availableGeometry(screen=monitor_num)
    geom = (rect.x(), rect.y(), rect.width(), rect.height())
    return geom
예제 #9
0
def split_analysis(ibs):
    """
    CommandLine:
        python -m wbia.other.dbinfo split_analysis --show
        python -m wbia split_analysis --show
        python -m wbia split_analysis --show --good

    Ignore:
        # mount
        sshfs -o idmap=user lev:/ ~/lev

        # unmount
        fusermount -u ~/lev

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from wbia.other.dbinfo import *  # NOQA
        >>> import wbia
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import wbia.guitool as gt
        >>> gt.ensure_qtapp()
        >>> win = split_analysis(ibs)
        >>> ut.quit_if_noshow()
        >>> import wbia.plottool as pt
        >>> gt.qtapp_loop(qwin=win)
        >>> #ut.show_if_requested()
    """
    # nid_list = ibs.get_valid_nids(filter_empty=True)
    import datetime

    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    filter_kw = {
        'multiple': None,
        # 'view': ['right'],
        # 'minqual': 'good',
        'is_known': True,
        'min_pername': 1,
    }
    aids1 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 1.0)),
        },
    ))
    aids2 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    ))
    all_aids = aids1 + aids2
    all_annots = ibs.annots(all_aids)
    logger.info('%d annots on day 1' % (len(aids1)))
    logger.info('%d annots on day 2' % (len(aids2)))
    logger.info('%d annots overall' % (len(all_annots)))
    logger.info('%d names overall' % (len(ut.unique(all_annots.nids))))

    nid_list, annots_list = all_annots.group(all_annots.nids)

    REVIEWED_EDGES = True
    if REVIEWED_EDGES:
        aids_list = [annots.aids for annots in annots_list]
        # aid_pairs = [annots.get_am_aidpairs() for annots in annots_list]  # Slower
        aid_pairs = ibs.get_unflat_am_aidpairs(aids_list)  # Faster
    else:
        # ALL EDGES
        aid_pairs = [annots.get_aidpairs() for annots in annots_list]

    speeds_list = ibs.unflat_map(ibs.get_annotpair_speeds, aid_pairs)
    import vtool as vt

    max_speeds = np.array([vt.safe_max(s, nans=False) for s in speeds_list])

    nan_idx = np.where(np.isnan(max_speeds))[0]
    inf_idx = np.where(np.isinf(max_speeds))[0]
    bad_idx = sorted(ut.unique(ut.flatten([inf_idx, nan_idx])))
    ok_idx = ut.index_complement(bad_idx, len(max_speeds))

    logger.info('#nan_idx = %r' % (len(nan_idx), ))
    logger.info('#inf_idx = %r' % (len(inf_idx), ))
    logger.info('#ok_idx = %r' % (len(ok_idx), ))

    ok_speeds = max_speeds[ok_idx]
    ok_nids = ut.take(nid_list, ok_idx)
    ok_annots = ut.take(annots_list, ok_idx)
    sortx = np.argsort(ok_speeds)[::-1]

    sorted_speeds = np.array(ut.take(ok_speeds, sortx))
    sorted_annots = np.array(ut.take(ok_annots, sortx))
    sorted_nids = np.array(ut.take(ok_nids, sortx))  # NOQA

    sorted_speeds = np.clip(sorted_speeds, 0, 100)

    # idx = vt.find_elbow_point(sorted_speeds)
    # EXCESSIVE_SPEED = sorted_speeds[idx]
    # http://www.infoplease.com/ipa/A0004737.html
    # http://www.speedofanimals.com/animals/zebra
    # ZEBRA_SPEED_MAX  = 64  # km/h
    # ZEBRA_SPEED_RUN  = 50  # km/h
    ZEBRA_SPEED_SLOW_RUN = 20  # km/h
    # ZEBRA_SPEED_FAST_WALK = 10  # km/h
    # ZEBRA_SPEED_WALK = 7  # km/h

    MAX_SPEED = ZEBRA_SPEED_SLOW_RUN
    # MAX_SPEED = ZEBRA_SPEED_WALK
    # MAX_SPEED = EXCESSIVE_SPEED

    flags = sorted_speeds > MAX_SPEED
    flagged_ok_annots = ut.compress(sorted_annots, flags)
    inf_annots = ut.take(annots_list, inf_idx)
    flagged_annots = inf_annots + flagged_ok_annots

    logger.info('MAX_SPEED = %r km/h' % (MAX_SPEED, ))
    logger.info('%d annots with infinite speed' % (len(inf_annots), ))
    logger.info('%d annots with large speed' % (len(flagged_ok_annots), ))
    logger.info(
        'Marking all pairs of annots above the threshold as non-matching')

    from wbia.algo.graph import graph_iden
    import networkx as nx

    progkw = dict(freq=1, bs=True, est_window=len(flagged_annots))

    bad_edges_list = []
    good_edges_list = []
    for annots in ut.ProgIter(flagged_annots,
                              lbl='flag speeding names',
                              **progkw):
        edge_to_speeds = annots.get_speeds()
        bad_edges = [
            edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED
        ]
        good_edges = [
            edge for edge, speed in edge_to_speeds.items()
            if speed <= MAX_SPEED
        ]
        bad_edges_list.append(bad_edges)
        good_edges_list.append(good_edges)
    all_bad_edges = ut.flatten(bad_edges_list)
    good_edges_list = ut.flatten(good_edges_list)
    logger.info('num_bad_edges = %r' % (len(ut.flatten(bad_edges_list)), ))
    logger.info('num_bad_edges = %r' % (len(ut.flatten(good_edges_list)), ))

    if 1:
        from wbia.viz import viz_graph2
        import wbia.guitool as gt

        gt.ensure_qtapp()

        if ut.get_argflag('--good'):
            logger.info('Looking at GOOD (no speed problems) edges')
            aid_pairs = good_edges_list
        else:
            logger.info('Looking at BAD (speed problems) edges')
            aid_pairs = all_bad_edges
        aids = sorted(list(set(ut.flatten(aid_pairs))))
        infr = graph_iden.AnnotInference(ibs, aids, verbose=False)
        infr.initialize_graph()

        # Use random scores to randomize sort order
        rng = np.random.RandomState(0)
        scores = (-rng.rand(len(aid_pairs)) * 10).tolist()
        infr.graph.add_edges_from(aid_pairs)

        if True:
            edge_sample_size = 250
            pop_nids = ut.unique(
                ibs.get_annot_nids(ut.unique(ut.flatten(aid_pairs))))
            sorted_pairs = ut.sortedby(aid_pairs,
                                       scores)[::-1][0:edge_sample_size]
            sorted_nids = ibs.get_annot_nids(ut.take_column(sorted_pairs, 0))
            sample_size = len(ut.unique(sorted_nids))
            am_rowids = ibs.get_annotmatch_rowid_from_undirected_superkey(*zip(
                *sorted_pairs))
            flags = ut.not_list(ut.flag_None_items(am_rowids))
            # am_rowids = ut.compress(am_rowids, flags)
            positive_tags = ['SplitCase', 'Photobomb']
            flags_list = [
                ut.replace_nones(ibs.get_annotmatch_prop(tag, am_rowids), 0)
                for tag in positive_tags
            ]
            logger.info('edge_case_hist: ' + ut.repr3([
                '%s %s' % (txt, sum(flags_))
                for flags_, txt in zip(flags_list, positive_tags)
            ]))
            is_positive = ut.or_lists(*flags_list)
            num_positive = sum(
                ut.lmap(any,
                        ut.group_items(is_positive, sorted_nids).values()))
            pop = len(pop_nids)
            logger.info('A positive is any edge flagged as a %s' %
                        (ut.conj_phrase(positive_tags, 'or'), ))
            logger.info('--- Sampling wrt edges ---')
            logger.info('edge_sample_size  = %r' % (edge_sample_size, ))
            logger.info('edge_population_size = %r' % (len(aid_pairs), ))
            logger.info('num_positive_edges = %r' % (sum(is_positive)))
            logger.info('--- Sampling wrt names ---')
            logger.info('name_population_size = %r' % (pop, ))
            vt.calc_error_bars_from_sample(sample_size,
                                           num_positive,
                                           pop,
                                           conf_level=0.95)

        nx.set_edge_attributes(infr.graph,
                               name='score',
                               values=dict(zip(aid_pairs, scores)))

        win = viz_graph2.AnnotGraphWidget(infr=infr,
                                          use_image=False,
                                          init_mode=None)
        win.populate_edge_model()
        win.show()
        return win
        # Make review interface for only bad edges

    infr_list = []
    iter_ = list(zip(flagged_annots, bad_edges_list))
    for annots, bad_edges in ut.ProgIter(iter_,
                                         lbl='creating inference',
                                         **progkw):
        aids = annots.aids
        nids = [1] * len(aids)
        infr = graph_iden.AnnotInference(ibs, aids, nids, verbose=False)
        infr.initialize_graph()
        infr.reset_feedback()
        infr_list.append(infr)

    # Check which ones are user defined as incorrect
    # num_positive = 0
    # for infr in infr_list:
    #    flag = np.any(infr.get_feedback_probs()[0] == 0)
    #    num_positive += flag
    # logger.info('num_positive = %r' % (num_positive,))
    # pop = len(infr_list)
    # logger.info('pop = %r' % (pop,))

    iter_ = list(zip(infr_list, bad_edges_list))
    for infr, bad_edges in ut.ProgIter(iter_,
                                       lbl='adding speed edges',
                                       **progkw):
        flipped_edges = []
        for aid1, aid2 in bad_edges:
            if infr.graph.has_edge(aid1, aid2):
                flipped_edges.append((aid1, aid2))
            infr.add_feedback((aid1, aid2), NEGTV)
        nx.set_edge_attributes(infr.graph, name='_speed_split', values='orig')
        nx.set_edge_attributes(infr.graph,
                               name='_speed_split',
                               values={edge: 'new'
                                       for edge in bad_edges})
        nx.set_edge_attributes(
            infr.graph,
            name='_speed_split',
            values={edge: 'flip'
                    for edge in flipped_edges},
        )

    # for infr in ut.ProgIter(infr_list, lbl='flagging speeding edges', **progkw):
    #    annots = ibs.annots(infr.aids)
    #    edge_to_speeds = annots.get_speeds()
    #    bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]

    def inference_stats(infr_list_):
        relabel_stats = []
        for infr in infr_list_:
            num_ccs, num_inconsistent = infr.relabel_using_reviews()
            state_hist = ut.dict_hist(
                nx.get_edge_attributes(infr.graph, 'decision').values())
            if POSTV not in state_hist:
                state_hist[POSTV] = 0
            hist = ut.dict_hist(
                nx.get_edge_attributes(infr.graph, '_speed_split').values())

            subgraphs = infr.positive_connected_compoments()
            subgraph_sizes = [len(g) for g in subgraphs]

            info = ut.odict([
                ('num_nonmatch_edges', state_hist[NEGTV]),
                ('num_match_edges', state_hist[POSTV]),
                (
                    'frac_nonmatch_edges',
                    state_hist[NEGTV] /
                    (state_hist[POSTV] + state_hist[NEGTV]),
                ),
                ('num_inconsistent', num_inconsistent),
                ('num_ccs', num_ccs),
                ('edges_flipped', hist.get('flip', 0)),
                ('edges_unchanged', hist.get('orig', 0)),
                ('bad_unreviewed_edges', hist.get('new', 0)),
                ('orig_size', len(infr.graph)),
                ('new_sizes', subgraph_sizes),
            ])
            relabel_stats.append(info)
        return relabel_stats

    relabel_stats = inference_stats(infr_list)

    logger.info('\nAll Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append(
            'stats(%s) = %s' %
            (key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    logger.info('\n'.join(ut.align_lines(lines, '=')))

    num_incon_list = np.array(ut.take_column(relabel_stats,
                                             'num_inconsistent'))
    can_split_flags = num_incon_list == 0
    logger.info('Can trivially split %d / %d' %
                (sum(can_split_flags), len(can_split_flags)))

    splittable_infrs = ut.compress(infr_list, can_split_flags)

    relabel_stats = inference_stats(splittable_infrs)

    logger.info('\nTrival Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        if key in ['num_inconsistent']:
            continue
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append(
            'stats(%s) = %s' %
            (key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    logger.info('\n'.join(ut.align_lines(lines, '=')))

    num_match_edges = np.array(ut.take_column(relabel_stats,
                                              'num_match_edges'))
    num_nonmatch_edges = np.array(
        ut.take_column(relabel_stats, 'num_nonmatch_edges'))
    flags1 = np.logical_and(num_match_edges > num_nonmatch_edges,
                            num_nonmatch_edges < 3)
    reasonable_infr = ut.compress(splittable_infrs, flags1)

    new_sizes_list = ut.take_column(relabel_stats, 'new_sizes')
    flags2 = [
        len(sizes) == 2 and sum(sizes) > 4 and (min(sizes) / max(sizes)) > 0.3
        for sizes in new_sizes_list
    ]
    reasonable_infr = ut.compress(splittable_infrs, flags2)
    logger.info('#reasonable_infr = %r' % (len(reasonable_infr), ))

    for infr in ut.InteractiveIter(reasonable_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        logger.info('max_speed = %r' % (max(edge_to_speeds.values())), )
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    rest = ~np.logical_or(flags1, flags2)
    nonreasonable_infr = ut.compress(splittable_infrs, rest)
    rng = np.random.RandomState(0)
    random_idx = ut.random_indexes(len(nonreasonable_infr) - 1, 15, rng=rng)
    random_infr = ut.take(nonreasonable_infr, random_idx)
    for infr in ut.InteractiveIter(random_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        logger.info('max_speed = %r' % (max(edge_to_speeds.values())), )
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    # import scipy.stats as st
    # conf_interval = .95
    # st.norm.cdf(conf_interval)
    # view-source:http://www.surveysystem.com/sscalc.htm
    # zval = 1.96  # 95 percent confidence
    # zValC = 3.8416  #
    # zValC = 6.6564

    # import statsmodels.stats.api as sms
    # es = sms.proportion_effectsize(0.5, 0.75)
    # sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=1)

    pop = 279
    num_positive = 3
    sample_size = 15
    conf_level = 0.95
    # conf_level = .99
    vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level)
    logger.info('---')
    vt.calc_error_bars_from_sample(sample_size + 38, num_positive, pop,
                                   conf_level)
    logger.info('---')
    vt.calc_error_bars_from_sample(sample_size + 38 / 3, num_positive, pop,
                                   conf_level)
    logger.info('---')

    vt.calc_error_bars_from_sample(15 + 38,
                                   num_positive=3,
                                   pop=675,
                                   conf_level=0.95)
    vt.calc_error_bars_from_sample(15,
                                   num_positive=3,
                                   pop=675,
                                   conf_level=0.95)

    pop = 279
    # err_frac = .05  # 5%
    err_frac = 0.10  # 10%
    conf_level = 0.95
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)

    pop = 675
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)
    vt.calc_sample_from_error_bars(0.05, pop, conf_level=0.95, prior=0.1)
    vt.calc_sample_from_error_bars(0.05, pop, conf_level=0.68, prior=0.2)
    vt.calc_sample_from_error_bars(0.10, pop, conf_level=0.68)

    vt.calc_error_bars_from_sample(100,
                                   num_positive=5,
                                   pop=675,
                                   conf_level=0.95)
    vt.calc_error_bars_from_sample(100,
                                   num_positive=5,
                                   pop=675,
                                   conf_level=0.68)
예제 #10
0
def dans_splits(ibs):
    """
    python -m wbia dans_splits --show

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from wbia.other.dbinfo import *  # NOQA
        >>> import wbia
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import wbia.guitool as gt
        >>> gt.ensure_qtapp()
        >>> win = dans_splits(ibs)
        >>> ut.quit_if_noshow()
        >>> import wbia.plottool as pt
        >>> gt.qtapp_loop(qwin=win)
    """
    # pair = 9262, 932

    dans_aids = [
        26548,
        2190,
        9418,
        29965,
        14738,
        26600,
        3039,
        2742,
        8249,
        20154,
        8572,
        4504,
        34941,
        4040,
        7436,
        31866,
        28291,
        16009,
        7378,
        14453,
        2590,
        2738,
        22442,
        26483,
        21640,
        19003,
        13630,
        25395,
        20015,
        14948,
        21429,
        19740,
        7908,
        23583,
        14301,
        26912,
        30613,
        19719,
        21887,
        8838,
        16184,
        9181,
        8649,
        8276,
        14678,
        21950,
        4925,
        13766,
        12673,
        8417,
        2018,
        22434,
        21149,
        14884,
        5596,
        8276,
        14650,
        1355,
        21725,
        21889,
        26376,
        2867,
        6906,
        4890,
        21524,
        6690,
        14738,
        1823,
        35525,
        9045,
        31723,
        2406,
        5298,
        15627,
        31933,
        19535,
        9137,
        21002,
        2448,
        32454,
        12615,
        31755,
        20015,
        24573,
        32001,
        23637,
        3192,
        3197,
        8702,
        1240,
        5596,
        33473,
        23874,
        9558,
        9245,
        23570,
        33075,
        23721,
        24012,
        33405,
        23791,
        19498,
        33149,
        9558,
        4971,
        34183,
        24853,
        9321,
        23691,
        9723,
        9236,
        9723,
        21078,
        32300,
        8700,
        15334,
        6050,
        23277,
        31164,
        14103,
        21231,
        8007,
        10388,
        33387,
        4319,
        26880,
        8007,
        31164,
        32300,
        32140,
    ]

    is_hyrbid = [  # NOQA
        7123,
        7166,
        7157,
        7158,
    ]
    needs_mask = [26836, 29742]  # NOQA
    justfine = [19862]  # NOQA

    annots = ibs.annots(dans_aids)
    unique_nids = ut.unique(annots.nids)
    grouped_aids = ibs.get_name_aids(unique_nids)
    annot_groups = ibs._annot_groups(grouped_aids)

    split_props = {'splitcase', 'photobomb'}
    needs_tag = [
        len(split_props.intersection(ut.flatten(tags))) == 0
        for tags in annot_groups.match_tags
    ]
    num_needs_tag = sum(needs_tag)
    num_had_split = len(needs_tag) - num_needs_tag
    logger.info('num_had_split = %r' % (num_had_split, ))
    logger.info('num_needs_tag = %r' % (num_needs_tag, ))

    # all_annot_groups = ibs._annot_groups(ibs.group_annots_by_name(ibs.get_valid_aids())[0])
    # all_has_split = [len(split_props.intersection(ut.flatten(tags))) > 0 for tags in all_annot_groups.match_tags]
    # num_nondan = sum(all_has_split) - num_had_split
    # logger.info('num_nondan = %r' % (num_nondan,))

    from wbia.algo.graph import graph_iden
    from wbia.viz import viz_graph2
    import wbia.guitool as gt
    import wbia.plottool as pt

    pt.qt4ensure()
    gt.ensure_qtapp()

    aids_list = ut.compress(grouped_aids, needs_tag)
    aids_list = [a for a in aids_list if len(a) > 1]
    logger.info('len(aids_list) = %r' % (len(aids_list), ))

    for aids in aids_list:
        infr = graph_iden.AnnotInference(ibs, aids)
        infr.initialize_graph()
        win = viz_graph2.AnnotGraphWidget(infr=infr,
                                          use_image=False,
                                          init_mode='rereview')
        win.populate_edge_model()
        win.show()
        return win
    assert False
예제 #11
0
def ggr_random_name_splits():
    """
    CommandLine:
        python -m wbia.viz.viz_graph2 ggr_random_name_splits --show

    Ignore:
        sshfs -o idmap=user lev:/ ~/lev

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.viz.viz_graph2 import *  # NOQA
        >>> ggr_random_name_splits()
    """
    import wbia.guitool as gt

    gt.ensure_qtapp()
    # nid_list = ibs.get_valid_nids(filter_empty=True)
    import wbia

    dbdir = '/media/danger/GGR/GGR-IBEIS'
    dbdir = (dbdir if ut.checkpath(dbdir) else
             ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS'))
    ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False)

    import datetime

    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    orig_filter_kw = {
        'multiple': None,
        # 'view': ['right'],
        # 'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    orig_aids = ibs.filter_annots_general(filter_kw=ut.dict_union(
        orig_filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    ))
    orig_all_annots = ibs.annots(orig_aids)
    orig_unique_nids, orig_grouped_annots_ = orig_all_annots.group(
        orig_all_annots.nids)
    # Ensure we get everything
    orig_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(orig_unique_nids)
    ]

    # pip install quantumrandom
    if False:
        import quantumrandom

        data = quantumrandom.uint16()
        seed = data.sum()
        print('seed = %r' % (seed, ))
        # import Crypto.Random
        # from Crypto import Random
        # quantumrandom.get_data()
        # StrongRandom = Crypto.Random.random.StrongRandom
        # aes.reseed(3340258)
        # chars = [str(chr(x)) for x in data.view(np.uint8)]
        # aes_seed = str('').join(chars)
        # aes = Crypto.Random.Fortuna.FortunaGenerator.AESGenerator()
        # aes.reseed(aes_seed)
        # aes.pseudo_random_data(10)

    orig_rand_idxs = ut.random_indexes(len(orig_grouped_annots), seed=3340258)
    orig_sample_size = 75
    random_annot_groups = ut.take(orig_grouped_annots, orig_rand_idxs)
    orig_annot_sample = random_annot_groups[:orig_sample_size]

    # OOOPS MADE ERROR REDO ----

    filter_kw = {
        'multiple': None,
        'view': ['right'],
        'minqual': 'good',
        'is_known': True,
        'min_pername': 2,
    }
    filter_kw_ = ut.dict_union(
        filter_kw,
        {
            'min_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime':
            ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        },
    )
    refiltered_sample = [
        ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_)
        for annot in orig_annot_sample
    ]
    is_ok = np.array(ut.lmap(len, refiltered_sample)) >= 2
    ok_part_orig_sample = ut.compress(orig_annot_sample, is_ok)
    ok_part_orig_nids = [x.nids[0] for x in ok_part_orig_sample]

    # Now compute real sample
    aids = ibs.filter_annots_general(filter_kw=filter_kw_)
    all_annots = ibs.annots(aids)
    unique_nids, grouped_annots_ = all_annots.group(all_annots.nids)
    grouped_annots = grouped_annots_
    # Ensure we get everything
    # grouped_annots = [ibs.annots(aids_) for aids_ in ibs.get_name_aids(unique_nids)]

    pop = len(grouped_annots)
    pername_list = ut.lmap(len, grouped_annots)
    groups = wbia.annots.AnnotGroups(grouped_annots, ibs)
    match_tags = [ut.unique(ut.flatten(t)) for t in groups.match_tags]
    tag_case_hist = ut.dict_hist(ut.flatten(match_tags))
    print('name_pop = %r' % (pop, ))
    print('Annots per Multiton Name' +
          ut.repr3(ut.get_stats(pername_list, use_median=True)))
    print('Name Tag Hist ' + ut.repr3(tag_case_hist))
    print('Percent Photobomb: %.2f%%' %
          (tag_case_hist['photobomb'] / pop * 100))
    print('Percent Split: %.2f%%' % (tag_case_hist['splitcase'] / pop * 100))

    # Remove the ok part from this sample
    remain_unique_nids = ut.setdiff(unique_nids, ok_part_orig_nids)
    remain_grouped_annots = [
        ibs.annots(aids_) for aids_ in ibs.get_name_aids(remain_unique_nids)
    ]

    sample_size = 75
    import vtool as vt

    vt.calc_sample_from_error_bars(0.05, pop, conf_level=0.95, prior=0.05)

    remain_rand_idxs = ut.random_indexes(len(remain_grouped_annots),
                                         seed=3340258)
    remain_sample_size = sample_size - len(ok_part_orig_nids)
    remain_random_annot_groups = ut.take(remain_grouped_annots,
                                         remain_rand_idxs)
    remain_annot_sample = remain_random_annot_groups[:remain_sample_size]

    annot_sample_nofilter = ok_part_orig_sample + remain_annot_sample
    # Filter out all bad parts
    annot_sample_filter = [
        ibs.annots(ibs.filter_annots_general(annot.aids, filter_kw=filter_kw_))
        for annot in annot_sample_nofilter
    ]
    annot_sample = annot_sample_filter

    win = None
    from wbia.viz import viz_graph2

    for annots in ut.InteractiveIter(annot_sample):
        if win is not None:
            win.close()
        win = viz_graph2.make_qt_graph_interface(ibs,
                                                 aids=annots.aids,
                                                 init_mode='rereview')
        print(win)

    sample_groups = wbia.annots.AnnotGroups(annot_sample, ibs)

    flat_tags = [ut.unique(ut.flatten(t)) for t in sample_groups.match_tags]

    print('Using Split and Photobomb')
    is_positive = ['photobomb' in t or 'splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only Photobomb')
    is_positive = ['photobomb' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)

    print('Only SplitCase')
    is_positive = ['splitcase' in t for t in flat_tags]
    num_positive = sum(is_positive)
    vt.calc_error_bars_from_sample(sample_size,
                                   num_positive,
                                   pop,
                                   conf_level=0.95)
예제 #12
0
def get_resolution_info(monitor_num=0):
    r"""
    Args:
        monitor_num (int): (default = 0)

    Returns:
        dict: info

    CommandLine:
        python -m wbia.plottool.screeninfo get_resolution_info --show
        xrandr | grep ' connected'
        grep "NVIDIA" /var/log/Xorg.0.log

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.plottool.screeninfo import *  # NOQA
        >>> monitor_num = 1
        >>> for monitor_num in range(get_number_of_monitors()):
        >>>     info = get_resolution_info(monitor_num)
        >>>     print('monitor(%d).info = %s' % (monitor_num, ut.repr3(info, precision=3)))
    """
    import wbia.guitool as gt

    app = gt.ensure_qtapp()[0]  # NOQA
    # screen_resolution = app.desktop().screenGeometry()
    # width, height = screen_resolution.width(), screen_resolution.height()
    # print('height = %r' % (height,))
    # print('width = %r' % (width,))

    desktop = QtWidgets.QDesktopWidget()
    screen = desktop.screen(monitor_num)
    ppi_x = screen.logicalDpiX()
    ppi_y = screen.logicalDpiY()
    dpi_x = screen.physicalDpiX()
    dpi_y = screen.physicalDpiY()
    # This call is not rotated correctly
    # rect = screen.screenGeometry()

    # This call has bad offsets
    rect = desktop.screenGeometry(screen=monitor_num)

    # This call subtracts offsets weirdly
    # desktop.availableGeometry(screen=monitor_num)

    pixels_w = rect.width()
    # for num in range(desktop.screenCount()):
    # pass
    pixels_h = rect.height()
    # + rect.y()

    """
    I have two monitors (screens), after rotation effects they have
    the geometry: (for example)
        S1 = {x: 0, y=300, w: 1920, h:1080}
        S2 = {x=1920, y=0, w: 1080, h:1920}

    Here is a pictoral example
    G--------------------------------------C-------------------
    |                                      |                  |
    A--------------------------------------|                  |
    |                                      |                  |
    |                                      |                  |
    |                                      |                  |
    |                 S1                   |                  |
    |                                      |        S2        |
    |                                      |                  |
    |                                      |                  |
    |                                      |                  |
    |--------------------------------------B                  |
    |                                      |                  |
    |                                      |                  |
    ----------------------------------------------------------D
    Desired Info

    G = (0, 0)
    A = (S1.x, S1.y)
    B = (S1.x + S1.w, S1.y + S1.h)

    C = (S2.x, S2.y)
    D = (S2.x + S1.w, S2.y + S2.h)

    from PyQt4 import QtGui, QtCore
    app = QtCore.QCoreApplication.instance()
    if app is None:
        import sys
        app = QtGui.QApplication(sys.argv)
    desktop = QtGui.QDesktopWidget()
    rect1 = desktop.screenGeometry(screen=0)
    rect2 = desktop.screenGeometry(screen=1)
    """

    # I want to get the relative positions of my monitors
    # pt = screen.pos()
    # pt = screen.mapToGlobal(pt)
    # pt = screen.mapToGlobal(screen.pos())
    # Screen offsets seem bugged
    # off_x = pt.x()
    # off_y = pt.y()
    # print(pt.x())
    # print(pt.y())
    # pt = screen.mapToGlobal(QtCore.QPoint(0, 0))
    # print(pt.x())
    # print(pt.y())
    off_x = rect.x()
    off_y = rect.y()
    # pt.x(), pt.y()

    inches_w = pixels_w / dpi_x
    inches_h = pixels_h / dpi_y
    inches_diag = (inches_w ** 2 + inches_h ** 2) ** 0.5

    mm_w = inches_w * ut.MM_PER_INCH
    mm_h = inches_h * ut.MM_PER_INCH
    mm_diag = inches_diag * ut.MM_PER_INCH

    ratio = min(mm_w, mm_h) / max(mm_w, mm_h)

    # pixel_density = dpi_x / ppi_x
    info = ut.odict(
        [
            ('monitor_num', monitor_num),
            ('off_x', off_x),
            ('off_y', off_y),
            ('ratio', ratio),
            ('ppi_x', ppi_x),
            ('ppi_y', ppi_y),
            ('dpi_x', dpi_x),
            ('dpi_y', dpi_y),
            # 'pixel_density', pixel_density),
            ('inches_w', inches_w),
            ('inches_h', inches_h),
            ('inches_diag', inches_diag),
            ('mm_w', mm_w),
            ('mm_h', mm_h),
            ('mm_diag', mm_diag),
            ('pixels_w', pixels_w),
            ('pixels_h', pixels_h),
        ]
    )
    return info