def remove_package(pkg): if packages.is_installed(pkg): print("Removing %s..." % pkg) packages.uninstall_package(pkg) print("Removed %s, please re-run script!" % pkg) jvm.stop() sys.exit(0) print('No such package is installed')
def uninstall_unofficial_packages(path): with open(path, "r") as f: weka_packages = json.load(f) for package_name, package_path in weka_packages.items(): if package_name != package_path and packages.is_installed( package_name): v.app.logger.info("Uninstalling %s", package_name) packages.uninstall_package(package_name)
def install_package(pkg): # install weka package if necessary if not packages.is_installed(pkg): print("Installing %s..." % pkg) packages.install_package(pkg) print("Installed %s, please re-run script!" % pkg) jvm.stop() sys.exit(0) print('Package already installed.')
def main(): if not is_installed("CLOPE"): print("CLOPE is not installed, installing now") install_package("CLOPE") print("please restart") return cls = Clusterer(classname="weka.clusterers.CLOPE") print("CLOPE is installed:", cls.to_commandline())
def install_packages(path): """Install weka packages Arguments: path {str} -- path to install weka packages json """ with open(path, "r") as f: weka_packages = json.load(f) for package_name, package_path in weka_packages.items(): if not packages.is_installed(package_name): v.app.logger.info("Installing: %s %s", package_name, package_path) packages.install_package(package_path)
import weka.core.jvm as jvm import weka.core.packages as packages from weka.core.classes import complete_classname jvm.start(packages=True) pkg = "SMOTE" # install package if necessary if not packages.is_installed(pkg): print("Installing %s..." % pkg) packages.install_package(pkg) print("Installed %s, please re-run script!" % pkg) jvm.stop() # testing classname completion print(complete_classname(".SMOTE")) jvm.stop()
import os data_dir = os.environ.get("WEKAMOOC_DATA") if data_dir is None: data_dir = "." + os.sep + "data" import weka.core.jvm as jvm from weka.core.converters import Loader from weka.core.classes import Random import weka.core.packages as packages from weka.classifiers import Classifier, Evaluation jvm.start(packages=True) # install stackingC if necessary if not packages.is_installed("stackingC"): print("Installing stackingC...") packages.install_package("stackingC") jvm.stop() print("Installed package, please restart") exit() # load glass loader = Loader(classname="weka.core.converters.ArffLoader") fname = data_dir + os.sep + "glass.arff" print("\nLoading dataset: " + fname + "\n") data = loader.load_file(fname) data.class_is_last() # compare several meta-classifiers with J48 for classifier in [("weka.classifiers.trees.J48", []),
import os data_dir = os.environ.get("WEKAMOOC_DATA") if data_dir is None: data_dir = "." + os.sep + "data" import os import weka.core.jvm as jvm from weka.core.converters import Loader from weka.core.classes import Random import weka.core.packages as packages from weka.classifiers import Classifier, Evaluation jvm.start(packages=True) # install stackingC if necessary if not packages.is_installed("stackingC"): print("Installing stackingC...") packages.install_package("stackingC") jvm.stop() print("Please restart") exit() # load glass loader = Loader(classname="weka.core.converters.ArffLoader") fname = data_dir + os.sep + "glass.arff" print("\nLoading dataset: " + fname + "\n") data = loader.load_file(fname) data.set_class_index(data.num_attributes() - 1) # compare several meta-classifiers with J48 for classifier in [("weka.classifiers.trees.J48", []), ("weka.classifiers.meta.Bagging", []),
import os data_dir = os.environ.get("WEKAMOOC_DATA") if data_dir is None: data_dir = "." + os.sep + "data" import os import weka.core.jvm as jvm import weka.core.packages as packages from weka.core.converters import Loader from weka.core.classes import Random from weka.classifiers import Classifier, Evaluation jvm.start(packages=True) pkg = "simpleEducationalLearningSchemes" if not packages.is_installed(pkg): packages.install_package(pkg): jvm.stop() print("Please restart") exit() # load weather.nominal fname = data_dir + os.sep + "weather.nominal.arff" print("\nLoading dataset: " + fname + "\n") loader = Loader(classname="weka.core.converters.ArffLoader") data = loader.load_file(fname) data.set_class_index(data.num_attributes() - 1) # cross-validate classifiers classifiers = [ "weka.classifiers.trees.J48",
import weka.core.packages as packages from weka.classifiers import Classifier, Evaluation import os from weka.core.converters import Loader from weka.attribute_selection import ASSearch, ASEvaluation, AttributeSelection from weka.filters import Filter ########SetUp######################## os.environ["WEKA_HOME"] = os.path.abspath( "./weka-3-8-4") #point it to your weka instalation folder jvm.start(packages=True, max_heap_size='6g') ##################################### ########Install###################### packages.refresh_cache() if not packages.is_installed('discriminantAnalysis'): print("Installing discriminantAnalysis") packages.install_package('discriminantAnalysis') if not packages.is_installed('PBC4cip'): print("Installing PBC4cip") packages.install_package(os.path.abspath('./weka_packages/PBC4cip.zip')) ###################################### #############Data##################### loader = Loader(classname="weka.core.converters.ArffLoader") data = loader.load_file(os.path.abspath('./universities.arff')) data.class_is_last() ###################################### #######rub1######################## print("rub1")