def run_test(cfg, model, distributed): if distributed: model = model.module iou_types = ("bbox",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize()
def train(cfg, local_rank, distributed, use_tensorboard=False): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) arguments = {"iteration": 0, "iter_size": cfg.SOLVER.ITER_SIZE} output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) if use_tensorboard: meters = TensorboardLogger( log_dir=os.path.join(cfg['OUTPUT_DIR'], 'log/'), start_iter=arguments['iteration'], delimiter=" ") else: meters = MetricLogger(delimiter=" ") do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, meters ) return model
def train_cdb(cfg, local_rank, distributed, use_tensorboard=False): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) model_cdb = ConvConcreteDB(cfg, model.backbone.out_channels) model_cdb.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) optimizer_cdb = make_cdb_optimizer(cfg, model_cdb) scheduler_cdb = make_lr_cdb_scheduler(cfg, optimizer_cdb) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) model_cdb, optimizer_cdb, = amp.initialize(model_cdb, optimizer_cdb, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) model_cdb = torch.nn.parallel.DistributedDataParallel( model_cdb, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) arguments = {"iteration": 0} output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD # TODO: check whether the *_cdb is properly loaded for inference when using 1 GPU checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk, model_cdb=model_cdb) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) print('Do CFG_DIRE', cfg.PATH_DATA_TRAIN) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) if use_tensorboard: meters = TensorboardLogger(log_dir=os.path.join( cfg['OUTPUT_DIR'], 'log/'), start_iter=arguments['iteration'], delimiter=" ") else: meters = MetricLogger(delimiter=" ") do_train_cdb(model, model_cdb, data_loader, optimizer, optimizer_cdb, scheduler, scheduler_cdb, checkpointer, device, checkpoint_period, arguments, meters, cfg) return model
def main(): parser = argparse.ArgumentParser( description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default= "/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--ckpt", help= "The path to the checkpoint for test, default is the latest checkpoint.", default=None, ) parser.add_argument( "--task", default="det", type=str, help="eval task: det | corloc", ) parser.add_argument( "--vis", dest="vis", help="Visualize the final results", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("wetectron", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if necessary use_mixed_precision = cfg.DTYPE == 'float16' amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt _ = checkpointer.load(ckpt, use_latest=args.ckpt is None) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, vis=args.vis, task=args.task, ) synchronize()