def test_readset(): rs = ReadSet() r = Read('Read A', 56) r.add_variant(100, 1, 37) r.add_variant(101, 0, 18) rs.add(r) r = Read('Read B', 0) r.add_variant(101, 0, 23) rs.add(r) r = Read('Read C', 17) r.add_variant(99, 1, 27) r.add_variant(80, 1, 17) r[1] = Variant(position=105, allele=0, quality=14) rs.add(r) assert rs[0].name == 'Read A' assert rs[1].name == 'Read B' assert rs[2].name == 'Read C' rs.sort() # should be sorted after finalization assert rs[0].name == 'Read C' assert rs[1].name == 'Read A' assert rs[2].name == 'Read B' assert len(rs) == 3 assert rs.get_positions() == [99, 100, 101, 105] r = rs[(0, 'Read A')] assert r.name == 'Read A' assert r.mapqs == (56, ), str(r.mapqs) r = rs[(0, 'Read B')] assert r.name == 'Read B' assert r.mapqs == (0, ) r = rs[(0, 'Read C')] assert r.name == 'Read C' assert r.mapqs == (17, ) assert len(r) == 2 assert r[0] == Variant(position=99, allele=1, quality=27) assert r[1] == Variant(position=105, allele=0, quality=14)
def run_genotype( phase_input_files, variant_file, reference=None, output=sys.stdout, samples=None, chromosomes=None, ignore_read_groups=False, indels=True, mapping_quality=20, max_coverage=15, nopriors=False, ped=None, recombrate=1.26, genmap=None, gt_qual_threshold=0, prioroutput=None, constant=0.0, overhang=10, affine_gap=False, gap_start=10, gap_extend=7, mismatch=15, write_command_line_header=True, use_ped_samples=False, ): """ For now: this function only runs the genotyping algorithm. Genotype likelihoods for all variants are computed using the forward backward algorithm """ timers = StageTimer() logger.info( "This is WhatsHap (genotyping) %s running under Python %s", __version__, platform.python_version(), ) if write_command_line_header: command_line = "(whatshap {}) {}".format(__version__, " ".join(sys.argv[1:])) else: command_line = None with ExitStack() as stack: # read the given input files (BAMs, VCFs, ref...) numeric_sample_ids = NumericSampleIds() phased_input_reader = stack.enter_context( PhasedInputReader( phase_input_files, reference, numeric_sample_ids, ignore_read_groups, indels=indels, mapq_threshold=mapping_quality, overhang=overhang, affine=affine_gap, gap_start=gap_start, gap_extend=gap_extend, default_mismatch=mismatch, )) show_phase_vcfs = phased_input_reader.has_vcfs # vcf writer for final genotype likelihoods vcf_writer = stack.enter_context( GenotypeVcfWriter(command_line=command_line, in_path=variant_file, out_file=output)) # vcf writer for only the prior likelihoods (if output is desired) prior_vcf_writer = None if prioroutput is not None: prior_vcf_writer = stack.enter_context( GenotypeVcfWriter( command_line=command_line, in_path=variant_file, out_file=stack.enter_context(open(prioroutput, "w")), )) # parse vcf with input variants # remove all likelihoods that may already be present vcf_reader = stack.enter_context( VcfReader( variant_file, indels=indels, genotype_likelihoods=False, ignore_genotypes=True, )) if ignore_read_groups and not samples and len(vcf_reader.samples) > 1: raise CommandLineError( "When using --ignore-read-groups on a VCF with " "multiple samples, --sample must also be used.") if not samples: samples = vcf_reader.samples # if --use-ped-samples is set, use only samples from PED file if ped and use_ped_samples: samples = set() for trio in PedReader(ped): if trio.child is None or trio.mother is None or trio.father is None: continue samples.add(trio.mother) samples.add(trio.father) samples.add(trio.child) vcf_sample_set = set(vcf_reader.samples) for sample in samples: if sample not in vcf_sample_set: raise CommandLineError( "Sample {!r} requested on command-line not found in VCF". format(sample)) if ped and genmap: logger.info( "Using region-specific recombination rates from genetic map %s.", genmap, ) recombination_cost_computer = GeneticMapRecombinationCostComputer( genmap) else: if ped: logger.info("Using uniform recombination rate of %g cM/Mb.", recombrate) recombination_cost_computer = UniformRecombinationCostComputer( recombrate) samples = frozenset(samples) families, family_trios = setup_families(samples, ped, numeric_sample_ids, max_coverage) # Read phase information provided as VCF files, if provided. with timers("parse_phasing_vcfs"): phased_input_reader.read_vcfs() # compute genotype likelihood threshold gt_prob = 1.0 - (10**(-gt_qual_threshold / 10.0)) for variant_table in timers.iterate("parse_vcf", vcf_reader): # create a mapping of genome positions to indices var_to_pos = dict() for i in range(len(variant_table.variants)): var_to_pos[variant_table.variants[i].position] = i chromosome = variant_table.chromosome if (not chromosomes) or (chromosome in chromosomes): logger.info("======== Working on chromosome %r", chromosome) else: logger.info( "Leaving chromosome %r unchanged (present in VCF but not requested by option --chromosome)", chromosome, ) vcf_writer.write_genotypes(chromosome, variant_table, indels, leave_unchanged=True) if prioroutput is not None: prior_vcf_writer.write_genotypes(chromosome, variant_table, indels, leave_unchanged=True) continue positions = [v.position for v in variant_table.variants] if not nopriors: # compute prior genotype likelihoods based on all reads for sample in samples: logger.info("---- Initial genotyping of %s", sample) with timers("read_bam"): readset, vcf_source_ids = phased_input_reader.read( chromosome, variant_table.variants, sample, read_vcf=False, ) readset.sort() genotypes, genotype_likelihoods = compute_genotypes( readset, positions) # recompute genotypes based on given threshold reg_genotype_likelihoods = [] for gl in range(len(genotype_likelihoods)): norm_sum = (genotype_likelihoods[gl][0] + genotype_likelihoods[gl][1] + genotype_likelihoods[gl][2] + 3 * constant) regularized = PhredGenotypeLikelihoods([ (genotype_likelihoods[gl][0] + constant) / norm_sum, (genotype_likelihoods[gl][1] + constant) / norm_sum, (genotype_likelihoods[gl][2] + constant) / norm_sum, ]) genotypes[gl] = determine_genotype( regularized, gt_prob) assert isinstance(genotypes[gl], Genotype) reg_genotype_likelihoods.append(regularized) variant_table.set_genotype_likelihoods_of( sample, [ PhredGenotypeLikelihoods(list(gl)) for gl in reg_genotype_likelihoods ], ) variant_table.set_genotypes_of(sample, genotypes) else: # use uniform genotype likelihoods for all individuals for sample in samples: variant_table.set_genotype_likelihoods_of( sample, [PhredGenotypeLikelihoods([1 / 3, 1 / 3, 1 / 3])] * len(positions), ) # if desired, output the priors in separate vcf if prioroutput is not None: prior_vcf_writer.write_genotypes(chromosome, variant_table, indels) # Iterate over all families to process, i.e. a separate DP table is created # for each family. for representative_sample, family in sorted(families.items()): if len(family) == 1: logger.info("---- Processing individual %s", representative_sample) else: logger.info("---- Processing family with individuals: %s", ",".join(family)) max_coverage_per_sample = max(1, max_coverage // len(family)) logger.info("Using maximum coverage per sample of %dX", max_coverage_per_sample) trios = family_trios[representative_sample] assert (len(family) == 1) or (len(trios) > 0) # Get the reads belonging to each sample readsets = dict() for sample in family: with timers("read_bam"): readset, vcf_source_ids = phased_input_reader.read( chromosome, variant_table.variants, sample, ) with timers("select"): readset = readset.subset([ i for i, read in enumerate(readset) if len(read) >= 2 ]) logger.info( "Kept %d reads that cover at least two variants each", len(readset), ) selected_reads = select_reads( readset, max_coverage_per_sample, preferred_source_ids=vcf_source_ids, ) readsets[sample] = selected_reads # Merge reads into one ReadSet (note that each Read object # knows the sample it originated from). all_reads = ReadSet() for sample, readset in readsets.items(): for read in readset: assert read.is_sorted(), "Add a read.sort() here" all_reads.add(read) all_reads.sort() # Determine which variants can (in principle) be phased accessible_positions = sorted(all_reads.get_positions()) logger.info( "Variants covered by at least one phase-informative " "read in at least one individual after read selection: %d", len(accessible_positions), ) # Create Pedigree pedigree = Pedigree(numeric_sample_ids) for sample in family: # genotypes are assumed to be unknown, so ignore information that # might already be present in the input vcf all_genotype_likelihoods = variant_table.genotype_likelihoods_of( sample) genotype_l = [ all_genotype_likelihoods[var_to_pos[a_p]] for a_p in accessible_positions ] pedigree.add_individual( sample, [ Genotype([]) for i in range(len(accessible_positions)) ], genotype_l, ) for trio in trios: pedigree.add_relationship( father_id=trio.father, mother_id=trio.mother, child_id=trio.child, ) recombination_costs = recombination_cost_computer.compute( accessible_positions) # Finally, run genotyping algorithm with timers("genotyping"): problem_name = "genotyping" logger.info( "Genotype %d sample%s by solving the %s problem ...", len(family), "s" if len(family) > 1 else "", problem_name, ) forward_backward_table = GenotypeDPTable( numeric_sample_ids, all_reads, recombination_costs, pedigree, accessible_positions, ) # store results for s in family: likelihood_list = variant_table.genotype_likelihoods_of( s) genotypes_list = variant_table.genotypes_of(s) for pos in range(len(accessible_positions)): likelihoods = forward_backward_table.get_genotype_likelihoods( s, pos) # compute genotypes from likelihoods and store information geno = determine_genotype(likelihoods, gt_prob) assert isinstance(geno, Genotype) genotypes_list[var_to_pos[ accessible_positions[pos]]] = geno likelihood_list[var_to_pos[ accessible_positions[pos]]] = likelihoods variant_table.set_genotypes_of(s, genotypes_list) variant_table.set_genotype_likelihoods_of( s, likelihood_list) with timers("write_vcf"): logger.info("======== Writing VCF") vcf_writer.write_genotypes(chromosome, variant_table, indels) logger.info("Done writing VCF") logger.debug("Chromosome %r finished", chromosome) logger.info("\n== SUMMARY ==") total_time = timers.total() log_memory_usage() logger.info( "Time spent reading BAM: %6.1f s", timers.elapsed("read_bam"), ) logger.info( "Time spent parsing VCF: %6.1f s", timers.elapsed("parse_vcf"), ) if show_phase_vcfs: logger.info( "Time spent parsing input phasings from VCFs: %6.1f s", timers.elapsed("parse_phasing_vcfs"), ) logger.info("Time spent selecting reads: %6.1f s", timers.elapsed("select")) logger.info( "Time spent genotyping: %6.1f s", timers.elapsed("genotyping"), ) logger.info( "Time spent writing VCF: %6.1f s", timers.elapsed("write_vcf"), ) logger.info( "Time spent on rest: %6.1f s", total_time - timers.sum(), ) logger.info("Total elapsed time: %6.1f s", total_time)
def read(self, chromosome, variants, sample, *, read_vcf=True, regions=None): """ Return a pair (readset, vcf_source_ids) where readset is a sorted ReadSet. Set read_vcf to False to not read phased blocks from the VCFs """ readset_reader = self._readset_reader for_sample = "for sample {!r} ".format(sample) if not self._ignore_read_groups else "" logger.info("Reading alignments %sand detecting alleles ...", for_sample) try: reference = self._fasta[chromosome] if self._fasta else None except KeyError: raise CommandLineError( "Chromosome {!r} present in VCF file, but not in the reference FASTA {!r}".format( chromosome, self._fasta.filename ) ) bam_sample = None if self._ignore_read_groups else sample try: readset = readset_reader.read(chromosome, variants, bam_sample, reference, regions) except SampleNotFoundError: logger.warning("Sample %r not found in any BAM/CRAM file.", bam_sample) readset = ReadSet() except ReadSetError as e: raise CommandLineError(e) except ReferenceNotFoundError: if chromosome.startswith("chr"): alternative = chromosome[3:] else: alternative = "chr" + chromosome message = "The chromosome {!r} was not found in the BAM/CRAM file.".format(chromosome) if readset_reader.has_reference(alternative): message += " Found {!r} instead".format(alternative) raise CommandLineError(message) vcf_source_ids = set() if read_vcf: # TODO this is a bit clumsy if self._vcfs is None: raise ValueError("call PhasedInputReader.read_vcfs() first") # Add phasing information from VCF files, if present sample_id = self._numeric_sample_ids[sample] for i, vcf in enumerate(self._vcfs): if chromosome in vcf: variant_table = vcf[chromosome] source_id = readset_reader.n_paths + i vcf_source_ids.add(source_id) for read in variant_table.phased_blocks_as_reads( sample, variants, source_id, sample_id ): readset.add(read) # TODO is this necessary? for read in readset: read.sort() readset.sort() logger.info( "Found %d reads covering %d variants", len(readset), len(readset.get_positions()), ) return readset, vcf_source_ids