예제 #1
0
파일: sgrid.py 프로젝트: acrosby/sci-wms
    def make_rtree(self):
        p = rtree.index.Property()
        p.overwrite = True
        p.storage   = rtree.index.RT_Disk
        p.Dimension = 2

        with self.dataset() as nc:
            sg = from_nc_dataset(nc)

            class FastRtree(rtree.Rtree):
                def dumps(self, obj):
                    try:
                        import cPickle
                        return cPickle.dumps(obj, -1)
                    except ImportError:
                        super(FastRtree, self).dumps(obj)

            def rtree_generator_function():
                for i, axis in enumerate(sg.centers):
                    for j, (x, y) in enumerate(axis):
                        yield (i+j, (x, y, x, y), (i, j))

            logger.info("Building Faces (centers) Rtree Topology Cache for {0}".format(self.name))
            _, temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            FastRtree(temp_file,
                      rtree_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info("Built Faces (centers) Rtree Topology Cache in {0} seconds.".format(time.time() - start))

            shutil.move('{}.dat'.format(temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(temp_file), self.face_tree_index_file)
예제 #2
0
    def make_rtree(self):
        with self.dataset() as nc:
            with self.topology() as topo:
                lon = topo.get_variables_by_attributes(standard_name="longitude")[0]
                lat = topo.get_variables_by_attributes(standard_name="latitude")[0]

                def rtree_generator_function():
                    c = -1
                    for row in range(lon.shape[0]):
                        for col in range(lon.shape[1]):
                            coord = (lon[row, col], lat[row, col], lon[row, col], lat[row, col])
                            c += 1
                            yield (c, coord, (col, row))

                logger.info("Building Faces (centers) Rtree Topology Cache for {0}".format(self.name))
                _, temp_file = tempfile.mkstemp(suffix=".face")
                start = time.time()
                p = index.Property()
                p.filename = str(temp_file)
                p.overwrite = True
                p.storage = index.RT_Disk
                p.dimension = 2
                index.Index(
                    p.filename.decode("utf-8"),
                    rtree_generator_function(),
                    properties=p,
                    overwrite=True,
                    interleaved=True,
                )
                logger.info("Built Faces Rtree Topology Cache in {0} seconds.".format(time.time() - start))

                shutil.move("{}.dat".format(temp_file), self.face_tree_data_file)
                shutil.move("{}.idx".format(temp_file), self.face_tree_index_file)
예제 #3
0
파일: sgrid.py 프로젝트: zhaojiayi/sci-wms
    def make_rtree(self):

        with self.dataset() as nc:
            sg = from_nc_dataset(nc)

            def rtree_generator_function():
                c = 0
                for i, axis in enumerate(sg.centers):
                    for j, (x, y) in enumerate(axis):
                        c += 1
                        yield (c, (x, y, x, y), (i, j))

            logger.info(
                "Building Faces (centers) Rtree Topology Cache for {0}".format(
                    self.name))
            _, temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            p = index.Property()
            p.filename = str(temp_file)
            p.overwrite = True
            p.storage = index.RT_Disk
            p.dimension = 2
            index.Index(p.filename.decode('utf-8'),
                        rtree_generator_function(),
                        properties=p,
                        overwrite=True,
                        interleaved=True)
            logger.info(
                "Built Faces (centers) Rtree Topology Cache in {0} seconds.".
                format(time.time() - start))

            shutil.move('{}.dat'.format(temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(temp_file), self.face_tree_index_file)
예제 #4
0
    def ready(self):
        # Initialize signals
        import wms.signals

        Dataset = self.get_model('Dataset')
        if settings.TESTING or settings.DEBUG:
            logger.info(
                "Not updating datasets due to TESTING or DEBUG setting being True"
            )
        else:
            try:
                for d in Dataset.objects.all():
                    try:
                        if not d.has_cache():
                            logger.info('Creating {} successful'.format(
                                d.name))
                        else:
                            logger.info('Updating {} successful'.format(
                                d.name))
                        d.update_cache()
                    except NotImplementedError:
                        logger.info(
                            'Updating {} failed.  Dataset type not implemented.'
                            .format(d.name))
                    except BaseException as e:
                        logger.info('Updating {} failed. {}.'.format(
                            d.name, str(e)))
            except (ProgrammingError, OperationalError):
                pass
예제 #5
0
파일: sgrid.py 프로젝트: jdickin/sci-wms
    def make_rtree(self):

        with self.dataset() as nc:
            sg = from_nc_dataset(nc)

            def rtree_generator_function():
                c = 0
                for i, axis in enumerate(sg.centers):
                    for j, (x, y) in enumerate(axis):
                        c += 1
                        yield (c, (x, y, x, y), (i, j))

            logger.info("Building Faces (centers) Rtree Topology Cache for {0}".format(self.name))
            _, temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            p = index.Property()
            p.filename = str(temp_file)
            p.overwrite = True
            p.storage   = index.RT_Disk
            p.dimension = 2
            index.Index(p.filename.decode('utf-8'),
                        rtree_generator_function(),
                        properties=p,
                        overwrite=True,
                        interleaved=True)
            logger.info("Built Faces (centers) Rtree Topology Cache in {0} seconds.".format(time.time() - start))

            shutil.move('{}.dat'.format(temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(temp_file), self.face_tree_index_file)
예제 #6
0
파일: ugrid.py 프로젝트: moghimis/sci-wms
    def update_time_cache(self):
        with self.dataset() as nc:
            if nc is None:
                logger.error("Failed update_time_cache, could not load dataset "
                             "as a netCDF4 object")
                return

            time_cache = {}
            layer_cache = {}
            time_vars = nc.get_variables_by_attributes(standard_name='time')
            for time_var in time_vars:
                time_cache[time_var.name] = nc4.num2date(
                    time_var[:],
                    time_var.units,
                    getattr(time_var, 'calendar', 'standard')
                )

            for ly in self.all_layers():
                try:
                    layer_cache[ly.access_name] = find_appropriate_time(nc.variables[ly.access_name], time_vars)
                except ValueError:
                    layer_cache[ly.access_name] = None

            full_cache = {'times': time_cache, 'layers': layer_cache}
            logger.info("Built time cache for {0}".format(self.name))
            caches['time'].set(self.time_cache_file, full_cache, None)
            return full_cache
예제 #7
0
파일: utils.py 프로젝트: moghimis/sci-wms
    def timed(*args, **kw):

        ts = time.time()
        result = f(*args, **kw)
        te = time.time()

        logger.info('func:{} took: {} sec'.format(f.__name__, te - ts))
        return result
예제 #8
0
    def timed(*args, **kw):

        ts = time.time()
        result = f(*args, **kw)
        te = time.time()

        logger.info('func:{} took: {} sec'.format(f.__name__, te-ts))
        return result
예제 #9
0
 def test_sgrid_gfi_single_variable_csv(self):
     params = copy(self.gfi_params)
     r = self.do_test(params, fmt='csv')
     df = pd.read_csv(r, index_col='time')
     logger.info(df)
     #assert df['time'][0] == datetime(2015, 04, 30, 0, 0, 0)
     assert df['x'][0] == -71.6979
     assert df['y'][0] == 40.9888
     assert df['u'][0] == -0.0315
예제 #10
0
 def test_sgrid_gfi_single_variable_csv(self):
     params = copy(self.gfi_params)
     r = self.do_test(params, fmt='csv')
     df = pd.read_csv(r, index_col='time')
     logger.info(df)
     #assert df['time'][0] == datetime(2015, 04, 30, 0, 0, 0)
     assert df['x'][0] == -71.6979
     assert df['y'][0] == 40.9888
     assert df['u'][0] == -0.0315
예제 #11
0
 def test_sgrid_gfi_single_variable_csv_4326(self):
     params = copy(self.gfi_params)
     params['srs'] = 'EPSG:4326'
     params['bbox'] = '-73.125,39.90973623,-71.71875,40.97989807'
     r = self.do_test(params, fmt='csv')
     df = pd.read_csv(r, index_col='time')
     logger.info(df)
     #assert df['time'][0] == datetime(2015, 4, 30)
     assert df['x'][0] == -71.6979
     assert df['y'][0] == 40.9888
     assert df['u'][0] == -0.0315
예제 #12
0
 def test_sgrid_gfi_single_variable_csv_4326(self):
     params = copy(self.gfi_params)
     params['srs']  = 'EPSG:4326'
     params['bbox'] = '-73.125,39.90973623,-71.71875,40.97989807'
     r = self.do_test(params, fmt='csv')
     df = pd.read_csv(r, index_col='time')
     logger.info(df)
     #assert df['time'][0] == datetime(2015, 4, 30)
     assert df['x'][0] == -71.6979
     assert df['y'][0] == 40.9888
     assert df['u'][0] == -0.0315
예제 #13
0
파일: ugrid.py 프로젝트: moghimis/sci-wms
    def make_rtree(self):

        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc=nc)

            def rtree_faces_generator_function():
                for face_idx, node_list in enumerate(ug.faces):
                    nodes = ug.nodes[node_list]
                    xmin, ymin = np.min(nodes, 0)
                    xmax, ymax = np.max(nodes, 0)
                    yield (face_idx, (xmin, ymin, xmax, ymax), face_idx)

            logger.info("Building Faces Rtree Topology Cache for {0}".format(self.name))
            start = time.time()
            _, face_temp_file = tempfile.mkstemp(suffix='.face')
            pf = index.Property()
            pf.filename = str(face_temp_file)
            pf.overwrite = True
            pf.storage   = index.RT_Disk
            pf.dimension = 2
            idx = index.Index(pf.filename,
                              rtree_faces_generator_function(),
                              properties=pf,
                              interleaved=True,
                              overwrite=True)
            idx.close()
            logger.info("Built Faces Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(face_temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(face_temp_file), self.face_tree_index_file)

            def rtree_nodes_generator_function():
                for node_index, (x, y) in enumerate(ug.nodes):
                    yield (node_index, (x, y, x, y), node_index)
            logger.info("Building Nodes Rtree Topology Cache for {0}".format(self.name))
            start = time.time()
            _, node_temp_file = tempfile.mkstemp(suffix='.node')
            pn = index.Property()
            pn.filename = str(node_temp_file)
            pn.overwrite = True
            pn.storage   = index.RT_Disk
            pn.dimension = 2
            idx = index.Index(pn.filename,
                              rtree_nodes_generator_function(),
                              properties=pn,
                              interleaved=True,
                              overwrite=True)
            idx.close()
            logger.info("Built Nodes Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(node_temp_file), self.node_tree_data_file)
            shutil.move('{}.idx'.format(node_temp_file), self.node_tree_index_file)
예제 #14
0
파일: ugrid.py 프로젝트: ayan-usgs/sci-wms
    def make_rtree(self):
        p = rtree.index.Property()
        p.overwrite = True
        p.storage   = rtree.index.RT_Disk
        p.Dimension = 2

        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc=nc)

            class FastRtree(rtree.Rtree):
                def dumps(self, obj):
                    try:
                        import cPickle
                        return cPickle.dumps(obj, -1)
                    except ImportError:
                        super(FastRtree, self).dumps(obj)

            def rtree_faces_generator_function():
                for face_idx, node_list in enumerate(ug.faces):
                    nodes = ug.nodes[node_list]
                    xmin, ymin = np.min(nodes, 0)
                    xmax, ymax = np.max(nodes, 0)
                    yield (face_idx, (xmin, ymin, xmax, ymax), face_idx)
            logger.info("Building Faces Rtree Topology Cache for {0}".format(self.name))
            _, face_temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            FastRtree(face_temp_file,
                      rtree_faces_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info("Built Faces Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(face_temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(face_temp_file), self.face_tree_index_file)

            def rtree_nodes_generator_function():
                for node_index, (x, y) in enumerate(ug.nodes):
                    yield (node_index, (x, y, x, y), node_index)
            logger.info("Building Nodes Rtree Topology Cache for {0}".format(self.name))
            _, node_temp_file = tempfile.mkstemp(suffix='.node')
            start = time.time()
            FastRtree(node_temp_file,
                      rtree_nodes_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info("Built Nodes Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(node_temp_file), self.node_tree_data_file)
            shutil.move('{}.idx'.format(node_temp_file), self.node_tree_index_file)
예제 #15
0
파일: apps.py 프로젝트: ayan-usgs/sci-wms
    def ready(self):
        # Initialize signals
        import wms.signals

        Dataset = self.get_model('Dataset')
        if settings.TESTING or settings.DEBUG:
            logger.info("Not updating datasets due to TESTING or DEBUG setting being True")
        else:
            try:
                for d in Dataset.objects.all():
                    try:
                        if not d.has_cache():
                            logger.info('Creating {} successful'.format(d.name))
                        else:
                            logger.info('Updating {} successful'.format(d.name))
                        d.update_cache()
                    except NotImplementedError:
                        logger.info('Updating {} failed.  Dataset type not implemented.'.format(d.name))
                    except BaseException as e:
                        logger.info('Updating {} failed. {}.'.format(d.name, str(e)))
            except (ProgrammingError, OperationalError):
                pass
예제 #16
0
파일: ugrid.py 프로젝트: jdickin/sci-wms
    def make_rtree(self):

        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc=nc)

            def rtree_faces_generator_function():
                for face_idx, node_list in enumerate(ug.faces):
                    nodes = ug.nodes[node_list]
                    xmin, ymin = np.min(nodes, 0)
                    xmax, ymax = np.max(nodes, 0)
                    yield (face_idx, (xmin, ymin, xmax, ymax), face_idx)
            logger.info("Building Faces Rtree Topology Cache for {0}".format(self.name))
            start = time.time()
            _, face_temp_file = tempfile.mkstemp(suffix='.face')
            pf = index.Property()
            pf.filename = str(face_temp_file)
            pf.overwrite = True
            pf.storage   = index.RT_Disk
            pf.dimension = 2
            idx = index.Index(pf.filename.decode('utf-8'),
                              rtree_faces_generator_function(),
                              properties=pf,
                              interleaved=True,
                              overwrite=True)
            idx.close()
            logger.info("Built Faces Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(face_temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(face_temp_file), self.face_tree_index_file)

            def rtree_nodes_generator_function():
                for node_index, (x, y) in enumerate(ug.nodes):
                    yield (node_index, (x, y, x, y), node_index)
            logger.info("Building Nodes Rtree Topology Cache for {0}".format(self.name))
            start = time.time()
            _, node_temp_file = tempfile.mkstemp(suffix='.node')
            pn = index.Property()
            pn.filename = str(node_temp_file)
            pn.overwrite = True
            pn.storage   = index.RT_Disk
            pn.dimension = 2
            idx = index.Index(pn.filename.decode('utf-8'),
                              rtree_nodes_generator_function(),
                              properties=pn,
                              interleaved=True,
                              overwrite=True)
            idx.close()
            logger.info("Built Nodes Rtree Topology Cache in {0} seconds.".format(time.time() - start))
            shutil.move('{}.dat'.format(node_temp_file), self.node_tree_data_file)
            shutil.move('{}.idx'.format(node_temp_file), self.node_tree_index_file)
예제 #17
0
파일: sgrid.py 프로젝트: acrosby/sci-wms
    def make_rtree(self):
        p = rtree.index.Property()
        p.overwrite = True
        p.storage = rtree.index.RT_Disk
        p.Dimension = 2

        with self.dataset() as nc:
            sg = from_nc_dataset(nc)

            class FastRtree(rtree.Rtree):
                def dumps(self, obj):
                    try:
                        import cPickle
                        return cPickle.dumps(obj, -1)
                    except ImportError:
                        super(FastRtree, self).dumps(obj)

            def rtree_generator_function():
                for i, axis in enumerate(sg.centers):
                    for j, (x, y) in enumerate(axis):
                        yield (i + j, (x, y, x, y), (i, j))

            logger.info(
                "Building Faces (centers) Rtree Topology Cache for {0}".format(
                    self.name))
            _, temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            FastRtree(temp_file,
                      rtree_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info(
                "Built Faces (centers) Rtree Topology Cache in {0} seconds.".
                format(time.time() - start))

            shutil.move('{}.dat'.format(temp_file), self.face_tree_data_file)
            shutil.move('{}.idx'.format(temp_file), self.face_tree_index_file)
예제 #18
0
    def make_rtree(self):
        p = rtree.index.Property()
        p.overwrite = True
        p.storage = rtree.index.RT_Disk
        p.Dimension = 2

        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc=nc)

            class FastRtree(rtree.Rtree):
                def dumps(self, obj):
                    try:
                        import cPickle
                        return cPickle.dumps(obj, -1)
                    except ImportError:
                        super(FastRtree, self).dumps(obj)

            def rtree_faces_generator_function():
                for face_idx, node_list in enumerate(ug.faces):
                    nodes = ug.nodes[node_list]
                    xmin, ymin = np.min(nodes, 0)
                    xmax, ymax = np.max(nodes, 0)
                    yield (face_idx, (xmin, ymin, xmax, ymax), face_idx)

            logger.info("Building Faces Rtree Topology Cache for {0}".format(
                self.name))
            _, face_temp_file = tempfile.mkstemp(suffix='.face')
            start = time.time()
            FastRtree(face_temp_file,
                      rtree_faces_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info(
                "Built Faces Rtree Topology Cache in {0} seconds.".format(
                    time.time() - start))
            shutil.move('{}.dat'.format(face_temp_file),
                        self.face_tree_data_file)
            shutil.move('{}.idx'.format(face_temp_file),
                        self.face_tree_index_file)

            def rtree_nodes_generator_function():
                for node_index, (x, y) in enumerate(ug.nodes):
                    yield (node_index, (x, y, x, y), node_index)

            logger.info("Building Nodes Rtree Topology Cache for {0}".format(
                self.name))
            _, node_temp_file = tempfile.mkstemp(suffix='.node')
            start = time.time()
            FastRtree(node_temp_file,
                      rtree_nodes_generator_function(),
                      properties=p,
                      overwrite=True,
                      interleaved=True)
            logger.info(
                "Built Nodes Rtree Topology Cache in {0} seconds.".format(
                    time.time() - start))
            shutil.move('{}.dat'.format(node_temp_file),
                        self.node_tree_data_file)
            shutil.move('{}.idx'.format(node_temp_file),
                        self.node_tree_index_file)
예제 #19
0
    def getfeatureinfo(self, layer, request):
        with self.dataset() as nc:
            with self.topology() as topo:
                data_obj = nc.variables[layer.access_name]
                data_location = data_obj.location
                # mesh_name = data_obj.mesh
                # Use local topology for pulling bounds data
                # ug = UGrid.from_ncfile(self.topology_file, mesh_name=mesh_name)

                geo_index, closest_x, closest_y, start_time_index, end_time_index, return_dates = self.setup_getfeatureinfo(
                    topo, data_obj, request, location=data_location)

                logger.info("Start index: {}".format(start_time_index))
                logger.info("End index: {}".format(end_time_index))
                logger.info("Geo index: {}".format(geo_index))

                return_arrays = []
                z_value = None
                if isinstance(layer, Layer):
                    if len(data_obj.shape) == 3:
                        z_index, z_value = self.nearest_z(
                            layer, request.GET['elevation'])
                        data = data_obj[start_time_index:end_time_index,
                                        z_index, geo_index]
                    elif len(data_obj.shape) == 2:
                        data = data_obj[start_time_index:end_time_index,
                                        geo_index]
                    elif len(data_obj.shape) == 1:
                        data = data_obj[geo_index]
                    else:
                        raise ValueError(
                            "Dimension Mismatch: data_obj.shape == {0} and time indexes = {1} to {2}"
                            .format(data_obj.shape, start_time_index,
                                    end_time_index))

                    return_arrays.append((layer.var_name, data))

                elif isinstance(layer, VirtualLayer):

                    # Data needs to be [var1,var2] where var are 1D (nodes only, elevation and time already handled)
                    for l in layer.layers:
                        data_obj = nc.variables[l.var_name]
                        if len(data_obj.shape) == 3:
                            z_index, z_value = self.nearest_z(
                                layer, request.GET['elevation'])
                            data = data_obj[start_time_index:end_time_index,
                                            z_index, geo_index]
                        elif len(data_obj.shape) == 2:
                            data = data_obj[start_time_index:end_time_index,
                                            geo_index]
                        elif len(data_obj.shape) == 1:
                            data = data_obj[geo_index]
                        else:
                            raise ValueError(
                                "Dimension Mismatch: data_obj.shape == {0} and time indexes = {1} to {2}"
                                .format(data_obj.shape, start_time_index,
                                        end_time_index))

                        return_arrays.append((l.var_name, data))

                # Data is now in the return_arrays list, as a list of numpy arrays.  We need
                # to add time and depth to them to create a single Pandas DataFrame
                if (len(data_obj.shape) == 3):
                    df = pd.DataFrame({
                        'time': return_dates,
                        'x': closest_x,
                        'y': closest_y,
                        'z': z_value
                    })
                elif (len(data_obj.shape) == 2):
                    df = pd.DataFrame({
                        'time': return_dates,
                        'x': closest_x,
                        'y': closest_y
                    })
                elif (len(data_obj.shape) == 1):
                    df = pd.DataFrame({'x': closest_x, 'y': closest_y})
                else:
                    df = pd.DataFrame()

                # Now add a column for each member of the return_arrays list
                for (var_name, np_array) in return_arrays:
                    df.loc[:, var_name] = pd.Series(np_array, index=df.index)

                return gfi_handler.from_dataframe(request, df)
예제 #20
0
    def ready(self):
        # Initialize signals
        import wms.signals

        Dataset = self.get_model('Dataset')
        if settings.TESTING or settings.DEBUG:
            logger.info(
                "Not updating datasets due to TESTING or DEBUG setting being True"
            )
        else:
            try:
                for d in Dataset.objects.all():
                    try:
                        update_delta = timedelta(minute=1)
                        now = datetime.utcnow().replace(tzinfo=pytz.utc)
                        if not d.has_cache():
                            d.update_cache()
                            logger.info('Creating {} successful'.format(
                                d.name))
                        elif d.cache_last_updated and (
                                now - d.cache_last_updated) < update_delta:
                            logger.info(
                                'Updating {} skipped. It was just done!'.
                                format(d.name))
                        else:
                            d.update_cache()
                            logger.info('Updating {} successful'.format(
                                d.name))
                    except NotImplementedError:
                        logger.info(
                            'Updating {} failed.  Dataset type not implemented.'
                            .format(d.name))
                    except BaseException as e:
                        logger.info('Updating {} failed. {}.'.format(
                            d.name, str(e)))
            except (ProgrammingError, OperationalError):
                pass
예제 #21
0
파일: apps.py 프로젝트: jdickin/sci-wms
    def ready(self):
        # Initialize signals
        import wms.signals

        Dataset = self.get_model('Dataset')
        if settings.TESTING or settings.DEBUG:
            logger.info("Not updating datasets due to TESTING or DEBUG setting being True")
        else:
            try:
                for d in Dataset.objects.all():
                    try:
                        update_delta = timedelta(minute=1)
                        now = datetime.utcnow().replace(tzinfo=pytz.utc)
                        if not d.has_cache():
                            d.update_cache()
                            logger.info('Creating {} successful'.format(d.name))
                        elif d.cache_last_updated and (now - d.cache_last_updated) < update_delta:
                            logger.info('Updating {} skipped. It was just done!'.format(d.name))
                        else:
                            d.update_cache()
                            logger.info('Updating {} successful'.format(d.name))
                    except NotImplementedError:
                        logger.info('Updating {} failed.  Dataset type not implemented.'.format(d.name))
                    except BaseException as e:
                        logger.info('Updating {} failed. {}.'.format(d.name, str(e)))
            except (ProgrammingError, OperationalError):
                pass
예제 #22
0
    def update_cache(self, force=False):
        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc)
            ug.save_as_netcdf(self.topology_file)

            if not os.path.exists(self.topology_file):
                logger.error(
                    "Failed to create topology_file cache for Dataset '{}'".
                    format(self.dataset))
                return

            uamp = nc.get_variables_by_attributes(
                standard_name='eastward_sea_water_velocity_amplitude')[0]
            vamp = nc.get_variables_by_attributes(
                standard_name='northward_sea_water_velocity_amplitude')[0]
            uphase = nc.get_variables_by_attributes(
                standard_name='eastward_sea_water_velocity_phase')[0]
            vphase = nc.get_variables_by_attributes(
                standard_name='northward_sea_water_velocity_phase')[0]
            tnames = nc.get_variables_by_attributes(
                standard_name='tide_constituent')[0]
            tfreqs = nc.get_variables_by_attributes(
                standard_name='tide_frequency')[0]

            with netCDF4.Dataset(self.topology_file, mode='a') as cnc:

                ntides = uamp.shape[uamp.dimensions.index('ntides')]
                nlocs = uamp.shape[uamp.dimensions.index(uamp.location)]
                cnc.createDimension('ntides', ntides)
                cnc.createDimension('maxStrlen64', 64)

                vdims = ('ntides', '{}_num_{}'.format(uamp.mesh,
                                                      uamp.location))

                # Swap ntides to always be the first dimension.. it can be the second in the source files!
                transpose = False
                if uamp.shape[0] > uamp.shape[1]:
                    logger.info(
                        "Found flipped dimensions in source file... fixing in local cache."
                    )
                    transpose = True

                # We are changing the variable names to 'u' and 'v' from 'u_amp' and 'v_amp' so
                # the layer.access_method can find the variable from the virtual layer 'u,v'
                ua = cnc.createVariable('u',
                                        uamp.dtype,
                                        vdims,
                                        zlib=True,
                                        fill_value=uamp._FillValue,
                                        chunksizes=[1, nlocs / 4])
                for x in uamp.ncattrs():
                    if x != '_FillValue':
                        ua.setncattr(x, uamp.getncattr(x))
                va = cnc.createVariable('v',
                                        vamp.dtype,
                                        vdims,
                                        zlib=True,
                                        fill_value=vamp._FillValue,
                                        chunksizes=[1, nlocs / 4])
                for x in vamp.ncattrs():
                    if x != '_FillValue':
                        va.setncattr(x, vamp.getncattr(x))
                up = cnc.createVariable('u_phase',
                                        uphase.dtype,
                                        vdims,
                                        zlib=True,
                                        fill_value=uphase._FillValue,
                                        chunksizes=[1, nlocs / 4])
                for x in uphase.ncattrs():
                    if x != '_FillValue':
                        up.setncattr(x, uphase.getncattr(x))
                vp = cnc.createVariable('v_phase',
                                        vphase.dtype,
                                        vdims,
                                        zlib=True,
                                        fill_value=vphase._FillValue,
                                        chunksizes=[1, nlocs / 4])
                for x in vphase.ncattrs():
                    if x != '_FillValue':
                        vp.setncattr(x, vphase.getncattr(x))

                tc = cnc.createVariable('tidenames', tnames.dtype,
                                        tnames.dimensions)
                tc[:] = tnames[:]
                for x in tnames.ncattrs():
                    if x != '_FillValue':
                        tc.setncattr(x, tnames.getncattr(x))

                tf = cnc.createVariable('tidefreqs', tfreqs.dtype,
                                        ('ntides', ))
                tf[:] = tfreqs[:]
                for x in tfreqs.ncattrs():
                    if x != '_FillValue':
                        tf.setncattr(x, tfreqs.getncattr(x))

                for r in range(ntides):
                    logger.info("Saving ntide {} into cache".format(r))
                    if transpose is True:
                        ua[r, :] = uamp[:, r].T
                        va[r, :] = vamp[:, r].T
                        up[r, :] = uphase[:, r].T
                        vp[r, :] = vphase[:, r].T
                    else:
                        ua[r, :] = uamp[r, :]
                        va[r, :] = vamp[r, :]
                        up[r, :] = uphase[r, :]
                        vp[r, :] = vphase[r, :]

        # Now do the RTree index
        self.make_rtree()

        self.cache_last_updated = datetime.utcnow().replace(tzinfo=pytz.utc)
        self.save()
예제 #23
0
파일: ugrid.py 프로젝트: ayan-usgs/sci-wms
    def getfeatureinfo(self, layer, request):
        with self.dataset() as nc:
            with self.topology() as topo:
                data_obj = nc.variables[layer.access_name]
                data_location = data_obj.location
                # mesh_name = data_obj.mesh
                # Use local topology for pulling bounds data
                # ug = UGrid.from_ncfile(self.topology_file, mesh_name=mesh_name)

                geo_index, closest_x, closest_y, start_time_index, end_time_index, return_dates = self.setup_getfeatureinfo(topo, data_obj, request, location=data_location)

                logger.info("Start index: {}".format(start_time_index))
                logger.info("End index: {}".format(end_time_index))
                logger.info("Geo index: {}".format(geo_index))

                return_arrays = []
                z_value = None
                if isinstance(layer, Layer):
                    if len(data_obj.shape) == 3:
                        z_index, z_value = self.nearest_z(layer, request.GET['elevation'])
                        data = data_obj[start_time_index:end_time_index, z_index, geo_index]
                    elif len(data_obj.shape) == 2:
                        data = data_obj[start_time_index:end_time_index, geo_index]
                    elif len(data_obj.shape) == 1:
                        data = data_obj[geo_index]
                    else:
                        raise ValueError("Dimension Mismatch: data_obj.shape == {0} and time indexes = {1} to {2}".format(data_obj.shape, start_time_index, end_time_index))

                    return_arrays.append((layer.var_name, data))

                elif isinstance(layer, VirtualLayer):

                    # Data needs to be [var1,var2] where var are 1D (nodes only, elevation and time already handled)
                    for l in layer.layers:
                        data_obj = nc.variables[l.var_name]
                        if len(data_obj.shape) == 3:
                            z_index, z_value = self.nearest_z(layer, request.GET['elevation'])
                            data = data_obj[start_time_index:end_time_index, z_index, geo_index]
                        elif len(data_obj.shape) == 2:
                            data = data_obj[start_time_index:end_time_index, geo_index]
                        elif len(data_obj.shape) == 1:
                            data = data_obj[geo_index]
                        else:
                            raise ValueError("Dimension Mismatch: data_obj.shape == {0} and time indexes = {1} to {2}".format(data_obj.shape, start_time_index, end_time_index))

                        return_arrays.append((l.var_name, data))

                # Data is now in the return_arrays list, as a list of numpy arrays.  We need
                # to add time and depth to them to create a single Pandas DataFrame
                if (len(data_obj.shape) == 3):
                    df = pd.DataFrame({'time': return_dates,
                                       'x': closest_x,
                                       'y': closest_y,
                                       'z': z_value})
                elif (len(data_obj.shape) == 2):
                    df = pd.DataFrame({'time': return_dates,
                                       'x': closest_x,
                                       'y': closest_y})
                elif (len(data_obj.shape) == 1):
                    df = pd.DataFrame({'x': closest_x,
                                       'y': closest_y})
                else:
                    df = pd.DataFrame()

                # Now add a column for each member of the return_arrays list
                for (var_name, np_array) in return_arrays:
                    df.loc[:, var_name] = pd.Series(np_array, index=df.index)

                return gfi_handler.from_dataframe(request, df)
예제 #24
0
    def update_cache(self, force=False):
        with self.dataset() as nc:
            ug = UGrid.from_nc_dataset(nc)
            ug.save_as_netcdf(self.topology_file)

            if not os.path.exists(self.topology_file):
                logger.error("Failed to create topology_file cache for Dataset '{}'".format(self.dataset))
                return

            uamp = nc.get_variables_by_attributes(standard_name='eastward_sea_water_velocity_amplitude')[0]
            vamp = nc.get_variables_by_attributes(standard_name='northward_sea_water_velocity_amplitude')[0]
            uphase = nc.get_variables_by_attributes(standard_name='eastward_sea_water_velocity_phase')[0]
            vphase = nc.get_variables_by_attributes(standard_name='northward_sea_water_velocity_phase')[0]
            tnames = nc.get_variables_by_attributes(standard_name='tide_constituent')[0]
            tfreqs = nc.get_variables_by_attributes(standard_name='tide_frequency')[0]

            with netCDF4.Dataset(self.topology_file, mode='a') as cnc:

                ntides = uamp.shape[uamp.dimensions.index('ntides')]
                nlocs = uamp.shape[uamp.dimensions.index(uamp.location)]
                cnc.createDimension('ntides', ntides)
                cnc.createDimension('maxStrlen64', 64)

                vdims = ('ntides', '{}_num_{}'.format(uamp.mesh, uamp.location))

                # Swap ntides to always be the first dimension.. it can be the second in the source files!
                transpose = False
                if uamp.shape[0] > uamp.shape[1]:
                    logger.info("Found flipped dimensions in source file... fixing in local cache.")
                    transpose = True

                # We are changing the variable names to 'u' and 'v' from 'u_amp' and 'v_amp' so
                # the layer.access_method can find the variable from the virtual layer 'u,v'
                ua = cnc.createVariable('u', uamp.dtype, vdims, zlib=True, fill_value=uamp._FillValue, chunksizes=[1, nlocs/4])
                for x in uamp.ncattrs():
                    if x != '_FillValue':
                        ua.setncattr(x, uamp.getncattr(x))
                va = cnc.createVariable('v', vamp.dtype, vdims, zlib=True, fill_value=vamp._FillValue, chunksizes=[1, nlocs/4])
                for x in vamp.ncattrs():
                    if x != '_FillValue':
                        va.setncattr(x, vamp.getncattr(x))
                up = cnc.createVariable('u_phase', uphase.dtype, vdims, zlib=True, fill_value=uphase._FillValue, chunksizes=[1, nlocs/4])
                for x in uphase.ncattrs():
                    if x != '_FillValue':
                        up.setncattr(x, uphase.getncattr(x))
                vp = cnc.createVariable('v_phase', vphase.dtype, vdims, zlib=True, fill_value=vphase._FillValue, chunksizes=[1, nlocs/4])
                for x in vphase.ncattrs():
                    if x != '_FillValue':
                        vp.setncattr(x, vphase.getncattr(x))

                tc = cnc.createVariable('tidenames', tnames.dtype, tnames.dimensions)
                tc[:] = tnames[:]
                for x in tnames.ncattrs():
                    if x != '_FillValue':
                        tc.setncattr(x, tnames.getncattr(x))

                tf = cnc.createVariable('tidefreqs', tfreqs.dtype, ('ntides',))
                tf[:] = tfreqs[:]
                for x in tfreqs.ncattrs():
                    if x != '_FillValue':
                        tf.setncattr(x, tfreqs.getncattr(x))

                for r in range(ntides):
                    logger.info("Saving ntide {} into cache".format(r))
                    if transpose is True:
                        ua[r, :] = uamp[:, r].T
                        va[r, :] = vamp[:, r].T
                        up[r, :] = uphase[:, r].T
                        vp[r, :] = vphase[:, r].T
                    else:
                        ua[r, :] = uamp[r, :]
                        va[r, :] = vamp[r, :]
                        up[r, :] = uphase[r, :]
                        vp[r, :] = vphase[r, :]

        # Now do the RTree index
        self.make_rtree()

        self.cache_last_updated = datetime.utcnow().replace(tzinfo=pytz.utc)
        self.save()
예제 #25
0
파일: ugrid.py 프로젝트: moghimis/sci-wms
    def getmap(self, layer, request):
        time_index, time_value = self.nearest_time(layer, request.GET['time'])
        wgs84_bbox = request.GET['wgs84_bbox']

        with self.dataset() as nc:
            data_obj = nc.variables[layer.access_name]
            data_location = data_obj.location
            mesh_name = data_obj.mesh

            ug = UGrid.from_ncfile(self.topology_file, mesh_name=mesh_name)
            coords = np.empty(0)
            if data_location == 'node':
                coords = ug.nodes
            elif data_location == 'face':
                coords = ug.face_coordinates
            elif data_location == 'edge':
                coords = ug.edge_coordinates

            lon = coords[:, 0]
            lat = coords[:, 1]

            # Calculate any vector padding if we need to
            padding = None
            vector_step = request.GET['vectorstep']
            if request.GET['image_type'] == 'vectors':
                padding_factor = calc_safety_factor(request.GET['vectorscale'])
                padding = calc_lon_lat_padding(lon, lat, padding_factor) * vector_step

            # Calculate the boolean spatial mask to slice with
            bool_spatial_idx = data_handler.ugrid_lat_lon_subset_idx(lon, lat,
                                                                     bbox=wgs84_bbox.bbox,
                                                                     padding=padding)

            # Randomize vectors to subset if we need to
            if request.GET['image_type'] == 'vectors' and vector_step > 1:
                num_vec = int(bool_spatial_idx.size / vector_step)
                step = int(bool_spatial_idx.size / num_vec)
                bool_spatial_idx[np.where(bool_spatial_idx==True)][0::step] = False  # noqa: E225

            # If no triangles intersect the field of view, return a transparent tile
            if not np.any(bool_spatial_idx):
                logger.info("No triangles in field of view, returning empty tile.")
                return self.empty_response(layer, request)

            if isinstance(layer, Layer):
                if (len(data_obj.shape) == 3):
                    z_index, z_value = self.nearest_z(layer, request.GET['elevation'])
                    data = data_obj[time_index, z_index, :]
                elif (len(data_obj.shape) == 2):
                    data = data_obj[time_index, :]
                elif len(data_obj.shape) == 1:
                    data = data_obj[:]
                else:
                    logger.debug("Dimension Mismatch: data_obj.shape == {0} and time = {1}".format(data_obj.shape, time_value))
                    return self.empty_response(layer, request)

                if request.GET['image_type'] in ['pcolor', 'contours', 'filledcontours']:
                    # Avoid triangles with nan values
                    bool_spatial_idx[np.isnan(data)] = False

                    # Get the faces to plot
                    faces = ug.faces[:]
                    face_idx = data_handler.face_idx_from_node_idx(faces, bool_spatial_idx)
                    faces_subset = faces[face_idx]
                    tri_subset = Tri.Triangulation(lon, lat, triangles=faces_subset)

                    if request.GET['image_type'] == 'pcolor':
                        return mpl_handler.tripcolor_response(tri_subset, data, request, data_location=data_location)
                    else:
                        return mpl_handler.tricontouring_response(tri_subset, data, request)
                elif request.GET['image_type'] in ['filledhatches', 'hatches']:
                    raise NotImplementedError('matplotlib does not support hatching on triangular grids... sorry!')
                else:
                    raise NotImplementedError('Image type "{}" is not supported.'.format(request.GET['image_type']))

            elif isinstance(layer, VirtualLayer):
                # Data needs to be [var1,var2] where var are 1D (nodes only, elevation and time already handled)
                data = []
                for l in layer.layers:
                    data_obj = nc.variables[l.var_name]
                    if (len(data_obj.shape) == 3):
                        z_index, z_value = self.nearest_z(layer, request.GET['elevation'])
                        data.append(data_obj[time_index, z_index, bool_spatial_idx])
                    elif (len(data_obj.shape) == 2):
                        data.append(data_obj[time_index, bool_spatial_idx])
                    elif len(data_obj.shape) == 1:
                        data.append(data_obj[bool_spatial_idx])
                    else:
                        logger.debug("Dimension Mismatch: data_obj.shape == {0} and time = {1}".format(data_obj.shape, time_value))
                        return self.empty_response(layer, request)

                if request.GET['image_type'] == 'vectors':
                    return mpl_handler.quiver_response(lon[bool_spatial_idx],
                                                       lat[bool_spatial_idx],
                                                       data[0],
                                                       data[1],
                                                       request)
                else:
                    raise NotImplementedError('Image type "{}" is not supported.'.format(request.GET['image_type']))