예제 #1
0
def setup_for_order(r, datafile, training_epochs, validation_epochs):
    # load up training and validation data for order r & set up results
    training_data = wobble.Data(datafile, orders=[r], 
                                epochs=training_epochs, min_snr=0.)
    training_results = wobble.Results(training_data)
    validation_data = wobble.Data(datafile, orders=training_data.orders, 
                                  epochs=validation_epochs, min_snr=0.)
    validation_results = wobble.Results(validation_data)
    return training_data, training_results, validation_data, validation_results
예제 #2
0
    star_reg_file = '../wobble/regularization/{0}_star_K{1}.hdf5'.format(starname, K_star)
    tellurics_reg_file = '../wobble/regularization/{0}_t_K{1}.hdf5'.format(starname, K_t)
    plot_dir = '../results/plots_{0}_Kstar{1}_Kt{2}/'.format(starname, K_star, K_t)
    
    print("running wobble on star {0} with K_star = {1}, K_t = {2}".format(starname, K_star, K_t))
    start_time = time()
    orders = np.arange(72)
    data = wobble.Data(filename='../data/'+starname+'_e2ds.hdf5', orders=orders)
    if True: # reload data and remove all post-upgrade spectra
        upgrade = 2457174.5 # June 2015
        e = data.epochs[data.dates < upgrade]
        data = wobble.Data(filename='../data/'+starname+'_e2ds.hdf5', orders=orders, epochs=e)
    data.drop_bad_orders()
    data.drop_bad_epochs()
    orders = np.copy(data.orders)
    results = wobble.Results(data=data)
    
    print("data loaded")
    print("time elapsed: {0:.2f} min".format((time() - start_time)/60.0))
    elapsed_time = time() - start_time
    

    if plots:
        print("plots will be saved under directory: {0}".format(plot_dir))
        if not os.path.exists(plot_dir):
            os.makedirs(plot_dir)
    star_learning_rate = 0.1
    telluric_learning_rate = 0.01
    for r,o in enumerate(orders):
        model = wobble.Model(data, results, r)
        model.add_star('star', variable_bases=K_star, 
            f['orders'] = np.append(orders, g['orders'][()])

            #check which orders are already there because wobble might drop some
            # TODO clean way is probably to make some neat ordered list of orders in either file first
            key_list = list(f.keys())
            for r in range(n_orders):
                if 'order{0}'.format(
                        r
                ) not in key_list:  #find first order index not already present
                    for r_chunk in range(g['R'][()]):
                        r_tot = r + r_chunk
                        #f.create_group('order{0}'.format(r_tot))
                        g.copy('order{0}'.format(r_chunk),
                               f,
                               name='order{0}'.format(r_tot))

                    break

# combine orders even though thiscurrently yields garbage RVs, still makes issues for chunks (different n_Epochs?, maybe it was just median breaking on chunksize 1?)
    print('n_orders = R =', f['R'][()])
results = wobble.Results(filename=results_file)
results.combine_orders('star')

print("final RVs calculated.")
print("time elapsed: {0:.2f} minutes".format((time() - start_time) / 60.0))

results.write(results_file)

print("all scripts executed")
print("time elapsed total: {0:.2f} min".format((time() - start_time) / 60.0))
def improve_order_regularization(r,
                                 o,
                                 star_filename,
                                 tellurics_filename,
                                 training_data,
                                 training_results,
                                 validation_data,
                                 validation_results,
                                 verbose=True,
                                 plot=False,
                                 basename='',
                                 K_star=0,
                                 K_t=0,
                                 L1=True,
                                 L2=True,
                                 tellurics_template_fixed=False):
    """
    Use a validation scheme to determine the best regularization parameters for 
    all model components in a given order r.
    Update files at star_filename, tellurics_filename with the best parameters.
    """

    training_model = wobble.Model(training_data, training_results, r)
    training_model.add_star('star', variable_bases=K_star)
    if tellurics_template_fixed:  # hackity hack hack
        results_51peg = wobble.Results(
            filename=
            '/Users/mbedell/python/wobble/results/results_51peg_Kstar0_Kt0.hdf5'
        )
        template_xs = np.copy(results_51peg.tellurics_template_xs[o])
        template_ys = np.copy(results_51peg.tellurics_template_ys[o])
        training_model.add_telluric('tellurics',
                                    rvs_fixed=True,
                                    template_fixed=True,
                                    variable_bases=K_t,
                                    template_xs=template_xs,
                                    template_ys=template_ys)
    else:
        training_model.add_telluric('tellurics',
                                    rvs_fixed=True,
                                    variable_bases=K_t)
    training_model.setup()
    training_model.optimize(niter=0, verbose=verbose, rv_uncertainties=False)

    if plot:
        n = 0  # epoch to plot
        title = 'Initialization'
        filename = '{0}_init'.format(basename)
        plot_fit(r,
                 n,
                 training_data,
                 training_results,
                 title=title,
                 basename=filename)

    validation_model = wobble.Model(validation_data, validation_results, r)
    validation_model.add_star('star',
                              variable_bases=K_star,
                              template_xs=training_results.star_template_xs[r]
                              )  # ensure templates are same size
    if tellurics_template_fixed:  # hackity hack hack
        validation_model.add_telluric(
            'tellurics',
            rvs_fixed=True,
            template_fixed=True,
            variable_bases=K_t,
            template_xs=training_results.tellurics_template_xs[r],
            template_ys=training_results.tellurics_template_ys[r])
    else:
        validation_model.add_telluric(
            'tellurics',
            rvs_fixed=True,
            variable_bases=K_t,
            template_xs=training_results.tellurics_template_xs[r])
    validation_model.setup()

    # the order in which these are defined will determine the order in which they are optimized:
    tensors_to_tune = [
        training_model.components[1].L2_template_tensor,
        training_model.components[0].L2_template_tensor,
        training_model.components[1].L1_template_tensor,
        training_model.components[0].L1_template_tensor
    ]
    tensor_names = [
        'L2_template', 'L2_template', 'L1_template', 'L1_template'
    ]  # this isonly  needed bc TF appends garbage to the end of the tensor name
    tensor_components = ['tellurics', 'star', 'tellurics', 'star']  # ^ same
    if K_star > 0:
        tensors_to_tune = np.append(tensors_to_tune, [
            training_model.components[0].L2_basis_vectors_tensor,
            training_model.components[0].L1_basis_vectors_tensor
        ])
        tensor_names = np.append(tensor_names,
                                 ['L2_basis_vectors', 'L1_basis_vectors'])
        tensor_components = np.append(tensor_components, ['star', 'star'])
    if K_t > 0:
        tensors_to_tune = np.append(tensors_to_tune, [
            training_model.components[1].L2_basis_vectors_tensor,
            training_model.components[1].L1_basis_vectors_tensor
        ])
        tensor_names = np.append(tensor_names,
                                 ['L2_basis_vectors', 'L1_basis_vectors'])
        tensor_components = np.append(tensor_components,
                                      ['tellurics', 'tellurics'])

    regularization_dict = {}
    #o_init = max(0, o-1) # initialize from previous order, or if o=0 use defaults
    o_init = o  # always initialize from starting guess (TODO: decide which init is better)
    for i, tensor in enumerate(tensors_to_tune):
        if tensor_components[i] == 'star':
            filename = star_filename
        elif tensor_components[i] == 'tellurics':
            filename = tellurics_filename
        else:
            print("something has gone wrong.")
            assert False
        with h5py.File(filename, 'r') as f:
            regularization_dict[tensor] = np.copy(f[tensor_names[i]][o_init])

    i = 0  # track order in which parameters are improved
    for component, (tensor, name) in zip(tensor_components,
                                         zip(tensors_to_tune, tensor_names)):
        if (name[0:2] == "L1" and L1) or (name[0:2] == "L2" and L2):
            i += 1
            regularization_dict[tensor] = improve_parameter(
                tensor,
                training_model,
                validation_model,
                regularization_dict,
                validation_data,
                validation_results,
                verbose=verbose,
                plot=plot,
                basename=basename + '_par{0}'.format(i))
            if component == 'star':
                filename = star_filename
            elif component == 'tellurics':
                filename = tellurics_filename
            else:
                print("something has gone wrong.")
                assert False
            with h5py.File(filename, 'r+') as f:
                f[name][o] = np.copy(regularization_dict[tensor])

    if plot:
        test_regularization_value(tensor,
                                  regularization_dict[tensor],
                                  training_model,
                                  validation_model,
                                  regularization_dict,
                                  validation_data,
                                  validation_results,
                                  plot=False,
                                  verbose=False)  # hack to update results
        title = 'Final'
        filename = '{0}_final'.format(basename)
        plot_fit(r,
                 n,
                 validation_data,
                 validation_results,
                 title=title,
                 basename=filename)

        fig = plt.figure()
        ax = fig.add_subplot(111)
        val_rvs = validation_results.star_rvs[r] + validation_results.bervs
        train_rvs = training_results.star_rvs[r] + training_results.bervs
        ax.plot(validation_results.dates, val_rvs - np.mean(val_rvs), 'r.')
        ax.plot(training_results.dates,
                train_rvs - np.mean(train_rvs),
                'k.',
                alpha=0.5)
        ax.set_ylabel('RV (m/s)')
        ax.set_xlabel('JD')
        fig.tight_layout()
        plt.savefig(basename + '_final_rvs.png')
        plt.close(fig)
    else:  # HACK for HD 189733
        e = np.asarray([
            0, 1, 6, 7, 9, 17, 18, 19, 21, 23, 24, 26, 30, 33, 34, 35, 36, 37,
            38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 55, 56, 61, 66,
            69, 70, 72, 73, 75
        ])  # night of August 28, 2007
        validation_epochs = np.random.choice(e, len(e) // 8, replace=False)
        training_epochs = np.delete(e, validation_epochs)

    training_data = wobble.Data(starname + '_e2ds.hdf5',
                                filepath='../data/',
                                orders=orders,
                                epochs=training_epochs,
                                min_snr=3)
    training_results = wobble.Results(training_data)
    validation_data = wobble.Data(starname + '_e2ds.hdf5',
                                  filepath='../data/',
                                  orders=training_data.orders,
                                  epochs=validation_epochs,
                                  min_snr=1)  # HACK
    validation_results = wobble.Results(validation_data)
    assert len(training_data.orders) == len(
        validation_data.orders
    ), "Number of orders used is not the same between training and validation data."
    orders = training_data.orders

    # improve each order's regularization:
    for r, o in enumerate(
            orders
    ):  # r is an index into the (cleaned) data. o is an index into the 72 orders (and the file tracking them).
예제 #6
0
    print("running wobble on star {0} with K_star = {1}, K_t = {2}".format(
        starname, K_star, K_t))
    start_time = time()
    orders = np.arange(72)
    '''
    e = [ 0,  1,  6,  7,  9, 17, 18, 19, 21, 23, 24, 26, 30, 33, 34, 35, 36,
       37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 55, 56, 61,
       66, 69, 70, 72, 73, 75] # night of August 28, 2007
    data = wobble.Data(starname+'_e2ds.hdf5', filepath='../data/', orders=orders, epochs=e)
    '''
    data = wobble.Data(starname + '_e2ds.hdf5',
                       filepath='../data/',
                       orders=orders)
    orders = np.copy(data.orders)
    results = wobble.Results(data=data)

    results_51peg = wobble.Results(
        filename=
        '/Users/mbedell/python/wobble/results/results_51peg_Kstar0_Kt0.hdf5')

    print("data loaded")
    print("time elapsed: {0:.2f} min".format((time() - start_time) / 60.0))
    elapsed_time = time() - start_time

    if plots:
        print("plots will be saved under directory: {0}".format(plot_dir))
        if not os.path.exists(plot_dir):
            os.makedirs(plot_dir)
    star_learning_rate = 0.1
    telluric_learning_rate = 0.01
if vis == True:
    orders = np.arange(11,53)
    lowest_optimized_order = 11
    data = wobble.Data(starname+'_vis'+'_e2ds.hdf5', filepath= data_directory, orders=orders, min_flux=10**-5, min_snr=0)
else:
    orders = np.arange(0,56)
    lowest_optimized_order = 0
    data = wobble.Data(starname+'_nir_split'+'_e2ds.hdf5', filepath= data_directory, orders=orders, min_flux=10**-5, min_snr=0)

######
#plot_dir = plot_dir + results_name + "/"#+ "_bad_ep/"
plot_dir = plot_dir + results_name + "_bad_ord(49)/"
#plot_dir = plot_dir + "GJ1148_o49_snr" + "/"
os.makedirs(plot_dir, exist_ok = True)

results = wobble.Results(filename = results_directory + results_name +".hdf5")

telluric_mask = np.genfromtxt("/data/cmatthe/python/wobble_aux/telluric_masks/" + 
                              "telluric_mask_carm_short.dat"
)


#epochs = [ 5, 24, 65, 67, 74, 88, 93] #bad GJ436 
#epochs = [10, 13, 32, 48, 66] # bad GJ1148
#epochs = [8, 20, 23,  24,  70,  97,107, 123, 141, 154] #bad Wolf294 (20 as "good standart")
epochs_results = results.epochs
#epochs = epochs_results[10:50:5]
#epochs = [0,9,11,10,12,60]

#epochs = list(set(epochs) & set(results.epochs)) #build intersectionn  to make sure epoch 
epochs = epochs_results
예제 #8
0
def improve_order_regularization(r,
                                 o,
                                 star_filename,
                                 tellurics_filename,
                                 training_data,
                                 training_results,
                                 validation_data,
                                 validation_results,
                                 verbose=True,
                                 plot=False,
                                 basename='',
                                 K_star=0,
                                 K_t=0,
                                 L1=True,
                                 L2=True,
                                 tellurics_template_fixed=False):
    """
    Use a validation scheme to determine the best regularization parameters for 
    all model components in a given order r.
    Update files at star_filename, tellurics_filename with the best parameters.
                                 
    By default, this tunes in the following order: 
            tellurics L2, star L2, tellurics L1, star L1.
                                 
    Parameters
    ----------
    r : int
        Index into `training_data` and `validation_data` to retrieve desired order.
    o : int
        Index into `star_filename` and `telluric_filename` to retrieve desired order.
    star_filename : str
        Filename containing regularization amplitudes for the star.
    tellurics_filename : str
        Filename containing regularization amplitudes for the tellurics.
    training_data : wobble.Data object
        Data to train template on (should be the majority of available data).
    training_results : wobble.Results object
        Results object corresponding to `training_data`.
    validation_data : wobble.Data object
        Data to use in assessing goodness-of-fit for template 
        (should be a representative minority of the available data).
    validation_results : wobble.Results object
        Results object corresponding to `validation_data`.
    verbose : bool (default `True`)
        Toggle print statements and progress bars.
    plot : bool (default `False`)
        Generate and save plots of fits to validation data.
    basename : str (default ``)
        String to append to the beginning of saved plots (file path and base).
    K_star : int (default `0`)
        Number of variable basis vectors for the star.
    K_t : int (default `0`)
        Number of variable basis vectors for the tellurics.
    L1 : bool (default `True`)
        Whether to tune L1 amplitudes.
    L2 : bool (default `True`)
        Whether to tune L2 amplitudes.
    tellurics_template_fixed : bool (default `False`)
        (currently hard-coded to work with MB's laptop, don't use this!)
        Whether to keep tellurics template fixed to values from 51 Peg fit.
    """

    training_model = wobble.Model(training_data, training_results, r)
    training_model.add_star('star', variable_bases=K_star)
    if tellurics_template_fixed:  # hackity hack hack
        results_51peg = wobble.Results(
            filename=
            '/Users/mbedell/python/wobble/results/results_51peg_Kstar0_Kt0.hdf5'
        )
        template_xs = np.copy(results_51peg.tellurics_template_xs[o])
        template_ys = np.copy(results_51peg.tellurics_template_ys[o])
        training_model.add_telluric('tellurics',
                                    rvs_fixed=True,
                                    template_fixed=True,
                                    variable_bases=K_t,
                                    template_xs=template_xs,
                                    template_ys=template_ys)
    else:
        training_model.add_telluric('tellurics',
                                    rvs_fixed=True,
                                    variable_bases=K_t)
    training_model.setup()
    training_model.optimize(niter=0, verbose=verbose, rv_uncertainties=False)

    if plot:
        n = 0  # epoch to plot
        title = 'Initialization'
        filename = '{0}_init'.format(basename)
        plot_fit(r,
                 n,
                 training_data,
                 training_results,
                 title=title,
                 basename=filename)

    validation_model = wobble.Model(validation_data, validation_results, r)
    validation_model.add_star('star',
                              variable_bases=K_star,
                              template_xs=training_results.star_template_xs[r]
                              )  # ensure templates are same size
    if tellurics_template_fixed:  # hackity hack hack
        validation_model.add_telluric(
            'tellurics',
            rvs_fixed=True,
            template_fixed=True,
            variable_bases=K_t,
            template_xs=training_results.tellurics_template_xs[r],
            template_ys=training_results.tellurics_template_ys[r])
    else:
        validation_model.add_telluric(
            'tellurics',
            rvs_fixed=True,
            variable_bases=K_t,
            template_xs=training_results.tellurics_template_xs[r])
    validation_model.setup()

    # the order in which these are defined will determine the order in which they are optimized:
    tensors_to_tune = [
        training_model.components[1].L2_template_tensor,
        training_model.components[0].L2_template_tensor,
        training_model.components[1].L1_template_tensor,
        training_model.components[0].L1_template_tensor
    ]
    tensor_names = [
        'L2_template', 'L2_template', 'L1_template', 'L1_template'
    ]  # this isonly  needed bc TF appends garbage to the end of the tensor name
    tensor_components = ['tellurics', 'star', 'tellurics', 'star']  # ^ same
    if K_star > 0:
        tensors_to_tune = np.append(tensors_to_tune, [
            training_model.components[0].L2_basis_vectors_tensor,
            training_model.components[0].L1_basis_vectors_tensor
        ])
        tensor_names = np.append(tensor_names,
                                 ['L2_basis_vectors', 'L1_basis_vectors'])
        tensor_components = np.append(tensor_components, ['star', 'star'])
    if K_t > 0:
        tensors_to_tune = np.append(tensors_to_tune, [
            training_model.components[1].L2_basis_vectors_tensor,
            training_model.components[1].L1_basis_vectors_tensor
        ])
        tensor_names = np.append(tensor_names,
                                 ['L2_basis_vectors', 'L1_basis_vectors'])
        tensor_components = np.append(tensor_components,
                                      ['tellurics', 'tellurics'])

    regularization_dict = {}
    #o_init = max(0, o-1) # initialize from previous order, or if o=0 use defaults
    o_init = o  # always initialize from starting guess (TODO: decide which init is better)
    for i, tensor in enumerate(tensors_to_tune):
        if tensor_components[i] == 'star':
            filename = star_filename
        elif tensor_components[i] == 'tellurics':
            filename = tellurics_filename
        else:
            print("something has gone wrong.")
            assert False
        with h5py.File(filename, 'r') as f:
            regularization_dict[tensor] = np.copy(f[tensor_names[i]][o_init])

    i = 0  # track order in which parameters are improved
    for component, (tensor, name) in zip(tensor_components,
                                         zip(tensors_to_tune, tensor_names)):
        if (name[0:2] == "L1" and L1) or (name[0:2] == "L2" and L2):
            i += 1
            regularization_dict[tensor] = improve_parameter(
                tensor,
                training_model,
                validation_model,
                regularization_dict,
                validation_data,
                validation_results,
                verbose=verbose,
                plot=plot,
                basename=basename + '_par{0}'.format(i))
            if component == 'star':
                filename = star_filename
            elif component == 'tellurics':
                filename = tellurics_filename
            else:
                print("something has gone wrong.")
                assert False
            with h5py.File(filename, 'r+') as f:
                f[name][o] = np.copy(regularization_dict[tensor])

    if plot:
        test_regularization_value(tensor,
                                  regularization_dict[tensor],
                                  training_model,
                                  validation_model,
                                  regularization_dict,
                                  validation_data,
                                  validation_results,
                                  plot=False,
                                  verbose=False)  # hack to update results
        title = 'Final'
        filename = '{0}_final'.format(basename)
        plot_fit(r,
                 n,
                 validation_data,
                 validation_results,
                 title=title,
                 basename=filename)

        fig = plt.figure()
        ax = fig.add_subplot(111)
        val_rvs = validation_results.star_rvs[r] + validation_results.bervs
        train_rvs = training_results.star_rvs[r] + training_results.bervs
        ax.plot(validation_results.dates, val_rvs - np.mean(val_rvs), 'r.')
        ax.plot(training_results.dates,
                train_rvs - np.mean(train_rvs),
                'k.',
                alpha=0.5)
        ax.set_ylabel('RV (m/s)')
        ax.set_xlabel('JD')
        fig.tight_layout()
        plt.savefig(basename + '_final_rvs.png')
        plt.close(fig)
예제 #9
0
    print("running wobble on star {0} with K_star = {1}, K_t = {2}".format(
        starname, K_star, K_t))
    start_time = time()
    orders = np.arange(72)
    '''
    e = [ 0,  1,  6,  7,  9, 17, 18, 19, 21, 23, 24, 26, 30, 33, 34, 35, 36,
       37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 55, 56, 61,
       66, 69, 70, 72, 73, 75] # night of August 28, 2007
    data = wobble.Data(starname+'_e2ds.hdf5', filepath='../data/', orders=orders, epochs=e)
    '''
    data = wobble.Data(starname + '_e2ds.hdf5',
                       filepath='../data/',
                       orders=orders)
    orders = np.copy(data.orders)
    results = wobble.Results(data=data)

    results_51peg = wobble.Results(
        filename='../results/results_51peg_Kstar0_Kt0.hdf5')

    print("data loaded")
    print("time elapsed: {0:.2f} min".format((time() - start_time) / 60.0))
    elapsed_time = time() - start_time

    if plots:
        print("plots will be saved under directory: {0}".format(plot_dir))
        if not os.path.exists(plot_dir):
            os.makedirs(plot_dir)
    star_learning_rate = 0.1
    telluric_learning_rate = 0.01
    for r, o in enumerate(orders):
예제 #10
0
def run_wobble(parameters):
    p = parameters

    results_name = 'results_{0}_Kstar{1}_Kt{2}_'.format(
        p.starname, p.K_star, p.K_t, p.niter) + p.output_suffix
    results_file_base = p.results_dir + results_name
    results_file = results_file_base + '.hdf5'
    data_file = p.data_file = p.data_dir + p.starname + p.data_suffix + '_e2ds.hdf5'

    temp_dir = p.temp_dir = p.results_dir + '/temp_' + results_name + '/'
    plot_dir = p.plot_dir = p.results_dir + '/plots_' + results_name + '/'
    #make (output) directory
    #TODO these data and results dirs should be handlesd somewhere else
    os.makedirs(p.results_dir, exist_ok=True)
    os.makedirs(p.data_dir, exist_ok=True)

    os.makedirs(temp_dir, exist_ok=True)
    os.makedirs(plot_dir, exist_ok=True)

    start_time = p.start_time = time()

    #generate epoch list
    # if parameters has been passed a global epochs list use this going forward. This is primarily used by regularization.py
    try:  #skipping the except will make major issues unless dropped epochs and orders are already handled
        epochs_list = p.epochs_list = p.global_epochs_list
        p.drop_orders = data.drop_orders  # this check here only works if data object is not yet initialized with empty drop order list.
    except (AttributeError, UnboundLocalError) as e:
        print(e)
        print("Loading data. May take a few minutes")
        try:
            data = wobble.Data(data_file,
                               orders=np.arange(p.start, p.end),
                               min_flux=10**-5,
                               min_snr=p.min_snr,
                               parameters=p)
            epochs_list = p.epochs_list = data.epochs.tolist()
        except wobble.data.AllDataDropped:
            p.min_snr = 5
            print("restarting with min_snr  = {}".format(p.min_snr))

            data = wobble.Data(data_file,
                               orders=np.arange(p.start, p.end),
                               min_flux=10**-5,
                               min_snr=p.min_snr,
                               parameters=p)
            epochs_list = p.epochs_list = data.epochs.tolist()

    #orders_list = p.orders_list = data.orders.tolist() #too agressive in visible # TODO implement alternate nir and vis handling
    try:
        p.drop_orders = data.drop_orders
        print("data.drop_orders", data.drop_orders)
    except AttributeError:
        print("data.drop_orders is not defined")

    base_orders_list = np.arange(p.start, p.end).tolist()
    orders_list = p.orders_list = [
        x for x in base_orders_list if x not in p.drop_orders
    ]
    print("orders_list", orders_list)

    chunks = p.chunks = chunk_list(p.start, p.end, p.chunk_size, p.orders_list)
    print("Chunks: ", chunks)
    #Loop over chunks
    for i in range(len(chunks)):
        #pass parameters object to chunk script
        p.i = i
        with open(
                os.path.dirname(os.path.abspath(__file__)) +
                "/carmenes_aux_files/chunk_parameters.pkl", "wb") as f:
            dill.dump(p, f)
        #start chunk script
        os.system("python3  {0}/chunk.py".format(
            os.path.dirname(os.path.abspath(__file__))))
        '''HACK to be removed
        #import parameters back after possible changes in chunk
        with open(os.path.dirname(os.path.abspath(__file__)) + "/" + "carmenes_aux_files/chunk_parameters.pkl", "rb") as f:
            p = dill.load(f)
        '''

    print("all chunks optimized: writing combined file")
    results_file_stitch(p.chunks, results_file, temp_dir)

    #Combine orders
    results = wobble.Results(filename=results_file)
    results.combine_orders('star')
    print("final RVs calculated.")
    print("time elapsed: {0:.2f} minutes".format((time() - start_time) / 60.0))
    results.write(results_file)
    append_dates_utc(
        results_file, data_file
    )  # cannot be done before results.write, as .write will remove dates_utc
    append_parameters(p, results_file)
    '''
    # test
    loaded_parameters = read_parameters_from_results(results_file)
    attrs = dir(loaded_parameters)
    print(attrs)
    for attr in attrs:
        #print(attr, getattr(loaded_parameters, attr))
        q = getattr(p, attr) == getattr(loaded_parameters, attr)
        if q == True:
            print(q)
        else:
            print(attr, q)
    '''
    print("results saved as: {0}".format(results_file))
    print("time elapsed: {0:.2f} minutes".format((time() - start_time) / 60.0))

    #delete temp_dir which at this point only contains duplicates
    shutil.rmtree(temp_dir)
    print("deleted: {0}".format(temp_dir))