def make_nmf(fix_atoms=False): dim_k, dim_f, dim_t = 5, 20, 100 atoms_kf = npr.dirichlet(np.ones(dim_f) * 0.9, size=dim_k) activations_tk = npr.gamma(shape=0.6, scale=200, size=(dim_t, dim_k)) observations_tf = np.einsum("tk,kf->tf", activations_tk, atoms_kf) observations_tf += npr.randn(dim_t, dim_f) * 1e-4 leaf_kf = wtf.LeafDirichlet( name="atoms", index_id="kf", norm_axis=(1,), tensor=atoms_kf if fix_atoms else wtfu.normalize(npr.rand(dim_k, dim_f), (1,)), update_period=0 if fix_atoms else 1, prior_shape=1, ) leaf_tk = wtf.LeafGamma( name="activations", index_id="tk", tensor=np.ones_like(activations_tk), prior_rate=1e-5, prior_shape=1, ) mul_tf = wtf.Multiplier(name="multiplier", index_id="tf") mul_tf.new_parents(leaf_kf, leaf_tk) obs_tf = wtf.PosObserver(name="observer", index_id="tf", tensor=observations_tf) mul_tf.new_child(obs_tf) root = wtf.Root(name="nmf") obs_tf.new_child(root) return root
def make_smooth_activation_nmf(): """ NMF with overlapping activation (each time coefficient spreads out on both sides). We uses this model in order to test strides_for_child """ _, leaf_ktw, mul_kwt, mul_tf, obs_tf = _aux_smooth_activation_nmf() dim_k, _, dim_w = leaf_ktw.tensor.shape dim_t = obs_tf.tensor.shape[0] leaf_w = wtf.LeafDirichlet( name="adder", index_id="w", norm_axis=(), tensor=np.ones(dim_w), update_period=0 ) mul_tk = wtf.Multiplier(name="activations", index_id="tk") shape = (dim_k, dim_w, dim_t + dim_w - 1) strides_for_child = ( [ 8, ] + list(np.cumprod(shape[:0:-1]) * 8) )[::-1] strides_for_child[-2] += 8 mul_kwt.new_child( mul_tk, shape_for_child=(dim_k, dim_w, dim_t), strides_for_child=strides_for_child, ) leaf_w.new_child(mul_tk) mul_tf.new_parent(mul_tk) root = wtf.Root(name="smooth_activation_nmf") obs_tf.new_child(root) return root
def _aux_smooth_activation_nmf(): dim_k, dim_f, dim_t = 5, 20, 100 dim_w = 9 atoms_kf = npr.dirichlet(np.ones(dim_f) * 0.9, size=dim_k) activations_tk = npr.gamma(shape=0.6, scale=200, size=(dim_t + dim_w - 1, dim_k)) spread_tkw = npr.dirichlet(3 * np.ones(dim_w), size=(dim_t + dim_w - 1, dim_k)) act_tkw = np.einsum("tk,tkw->tkw", activations_tk, spread_tkw) activations_tk = np.zeros((dim_t, dim_k)) for ww in range(dim_w): activations_tk += act_tkw[ww : dim_t + ww, :, ww] observations_tf = np.einsum("tk,kf->tf", activations_tk, atoms_kf) observations_tf += npr.randn(dim_t, dim_f) * 1e-4 leaf_kf = wtf.LeafDirichlet( name="atoms", index_id="kf", norm_axis=(1,), tensor=wtfu.normalize(npr.rand(dim_k, dim_f), (1,)), prior_shape=1, ) leaf_kt = wtf.LeafGamma( name="impulse", index_id="kt", tensor=np.ones((dim_k, dim_t + dim_w - 1)), prior_shape=1, prior_rate=1e-5, ) leaf_ktw = wtf.LeafDirichlet( name="spreading", index_id="ktw", norm_axis=(2,), tensor=np.ones((dim_k, dim_t + dim_w - 1, dim_w)) / dim_w, prior_shape=10, ) mul_kwt = wtf.Multiplier(name="mul_kwt", index_id="kwt") mul_kwt.new_parents(leaf_kt, leaf_ktw) mul_tf = wtf.Multiplier(name="reconstruction", index_id="tf") mul_tf.new_parent(leaf_kf) obs_tf = wtf.PosObserver(name="observer", index_id="tf", tensor=observations_tf) mul_tf.new_child(obs_tf) return leaf_kt, leaf_ktw, mul_kwt, mul_tf, obs_tf
def make_deconv_tree(): dim_x0, dim_y0, dim_x1, dim_y1 = 20, 20, 3, 3 dim_x = dim_x0 - dim_x1 + 1 dim_y = dim_y0 - dim_y1 + 1 dim_k = 2 kernel_kyx = np.zeros((dim_k, dim_y1, dim_x1)) kernel_kyx[0, [1, 0, 1, 2, 1], [0, 1, 1, 1, 2]] = 1 kernel_kyx[1, [0, 0, 1, 1, 2, 2, 2], [0, 2, 0, 2, 0, 1, 2]] = 1 kernel_kyx /= kernel_kyx.sum((1, 2), keepdims=True) impulse_kyx = npr.gamma(shape=0.08, scale=200, size=(dim_k, dim_y0, dim_x0)) impulse_kyx[impulse_kyx < 200] = 0 impulse_kyx[impulse_kyx >= 200] = 200 image_yx = np.zeros((dim_y, dim_x)) for kk in range(dim_k): image_yx += convolve2d(impulse_kyx[kk], kernel_kyx[kk], mode="valid") leaf_kernel = wtf.LeafDirichlet( name="kernel", index_id=("k", "j", "i"), norm_axis=(1, 2), tensor=np.ones((dim_k, dim_y1, dim_x1)), prior_shape=100 + 1e-4 * npr.rand(dim_k, dim_y1, dim_x1), init_type="prior", ) leaf_impulse = wtf.LeafGamma( name="impulse", index_id=("k", "y", "x"), tensor=np.ones((dim_k, dim_y0, dim_x0)), prior_shape=1, prior_rate=0.0001, ) mul_image = wtf.Multiplier( name="reconstruction", index_id="yx", conv_idx_ids=("y", "x") ) leaf_kernel.new_child(mul_image, index_id_for_child=("k", "y", "x")) leaf_impulse.new_child(mul_image, index_id_for_child=("k", "y", "x")) obs = wtf.PosObserver( name="image", index_id="yx", tensor=image_yx, drawings_max=200 * dim_x * dim_y, drawings_step=10, ) mul_image.new_child(obs) root = wtf.Root(name="root") obs.new_child(root) return root
def make_sparse_nmf2(prior_rate=0.001, obs=None): """ NMF with l1/l2 sparse constraint on atoms """ dim_f, dim_t, dim_k = 2, 100, 2 # gt_kf = npr.dirichlet(np.ones(dim_f), size=dim_k) gt_kf = np.array([[4.0, 1.0], [4.0, 3.0]]) gt_kf /= gt_kf.sum(1, keepdims=True) gt_tk = npr.gamma(shape=0.3, scale=100, size=(dim_t, dim_k)) gt_tf = np.dot(gt_tk, gt_kf) gt_tf += npr.rand(dim_t, dim_f) if obs is not None: gt_tf = obs leaf_kf = wtf.LeafGammaNorm( name="atoms", index_id="kf", tensor=np.ones((dim_k, dim_f)), l2_norm_axis=(1,), prior_rate=prior_rate, prior_shape=1 + 1e-4 * npr.rand(dim_k, dim_k), ) leaf_kt = wtf.LeafDirichlet( name="activations", index_id="kt", norm_axis=(1,), tensor=np.ones((dim_k, dim_t)) / dim_t, prior_shape=1, ) mul_tf = wtf.Multiplier(name="reconstruction", index_id="tf") mul_tf.new_parents(leaf_kt, leaf_kf) obs_tf = wtf.PosObserver(name="observations", index_id="tf", tensor=gt_tf) mul_tf.new_child(obs_tf) root = wtf.Root(name="root", verbose_iter=50, cost_computation_iter=10) obs_tf.new_child(root) return root
def make_test_tree(): """ A toy wonterfact tree is designed in order to test the maximum possibilities. """ dim_k, dim_s, dim_t, dim_f, dim_c = 3, 2, 10, 4, 2 leaf_energy = wtf.LeafGamma( name="leaf_energy", index_id="", tensor=np.array(1), prior_shape=1.1, prior_rate=0.01, ) leaf_k = wtf.LeafDirichlet( name="leaf_k", index_id="k", norm_axis=(0, ), tensor=normalize(npr.rand(dim_k), 0), prior_shape=1, ) mul_k = wtf.Multiplier(name="mul_k", index_id=("k", )) mul_k.new_parents(leaf_energy, leaf_k) leaf_kts_0 = wtf.LeafDirichlet( name="leaf_kts_0", index_id="kts", norm_axis=(1, 2), tensor=normalize(npr.rand(dim_k, dim_t, dim_s), (1, 2)), prior_shape=1, ) mul_kts = wtf.Multiplier(name="mul_kts", index_id="kts") mul_kts.new_parents(leaf_kts_0, mul_k) leaf_kts_1 = wtf.LeafGamma( name="leaf_kts_1", index_id="kts", tensor=npr.rand(dim_k, dim_t, dim_s), prior_shape=1, prior_rate=0.001, ) mult_ktsc = wtf.Multiplexer(name="mult_ktsc", index_id="ktsc") mult_ktsc.new_parents(leaf_kts_1, mul_kts) # no update for this leaf # it acts like an Adder (no normalization) leaf_c = wtf.LeafDirichlet( name="leaf_c", norm_axis=(), index_id="c", tensor=np.ones(dim_c), update_period=0, ) mul_kts_1 = wtf.Multiplier(name="mul_kts_1", index_id="kts") mul_kts_1.new_parents(mult_ktsc, leaf_c) # two updates every 3 iterations leaf_kf = wtf.LeafDirichlet( name="leaf_kf", index_id="kf", norm_axis=(1, ), tensor=normalize(npr.rand(dim_k, dim_f), 1), prior_shape=1, update_period=3, update_succ=2, update_offset=0, ) mul_tfs = wtf.Multiplier(name="mul_tfs", index_id="tfs") mul_tfs.new_parents(mul_kts_1, leaf_kf) obs_tf = wtf.RealObserver(name="obs_tf", index_id="tf", tensor=100 * npr.randn(dim_t, dim_f)) mul_tfs.new_child(obs_tf) root = wtf.Root( name="root", cost_computation_iter=1, stop_estim_threshold=0, update_type="regular", inference_mode="EM", verbose_iter=10, ) obs_tf.new_child(root) leaf_k_1 = wtf.LeafGamma( name="leaf_k_1", index_id="k", tensor=npr.rand(dim_k), prior_shape=1, prior_rate=0.001, ) # one update every 3 iterations leaf_kt = wtf.LeafDirichlet( name="leaf_kt", index_id="kt", norm_axis=(1, ), tensor=normalize(np.ones((dim_k, dim_t)), 1), prior_shape=1, update_period=3, update_succ=1, update_offset=2, ) mul_kt = wtf.Multiplier(name="mul_kt", index_id="kt") mul_kt.new_parents(leaf_k_1, leaf_kt) mul_tf = wtf.Multiplier(name="mul_tf", index_id="tf") mul_tf.new_parents(leaf_kf, mul_kt) obs_tf_2 = wtf.PosObserver(name="obs_tf_2", index_id="tf", tensor=100 * npr.rand(dim_t, dim_f)) mul_tf.new_child(obs_tf_2) obs_tf_2.new_child(root) root.dim_k, root.dim_s, root.dim_t, root.dim_f, root.dim_c = ( dim_k, dim_s, dim_t, dim_f, dim_c, ) return root
def make_sparse_nmf3(prior_rate=0.001, obs=None): """ NMF with approximation of l2 norm for atoms """ dim_f, dim_t, dim_k, dim_a = 2, 100, 2, 2 gt_kf = npr.dirichlet(np.ones(dim_f), size=dim_k) # gt_kf = np.array([[4.0, 1.0], [4.0, 3.0]]) gt_kf /= gt_kf.sum(1, keepdims=True) gt_tk = npr.gamma(shape=0.3, scale=100, size=(dim_t, dim_k)) gt_tf = np.dot(gt_tk, gt_kf) gt_tf += npr.rand(dim_t, dim_f) if obs is not None: gt_tf = obs leaf_k = wtf.LeafGamma( name="atoms_energy", index_id="k", tensor=np.ones((dim_k)), prior_shape=1, prior_rate=prior_rate, ) leaf_kf = wtf.LeafDirichlet( name="atoms_init", index_id="kf", norm_axis=(1,), tensor=wtfu.normalize(npr.rand(dim_k, dim_f), (1,)), prior_shape=1, ) mul_kf = wtf.Multiplier(index_id="kf") mul_kf.new_parents(leaf_kf, leaf_k) mul_kfg = wtf.Multiplier(index_id="kfg") mul_kf.new_child(mul_kfg) leaf_kf.new_child(mul_kfg, index_id_for_child="kg") leaf_c = wtf.LeafDirichlet( index_id="c", norm_axis=(0,), tensor=np.array([0.5, 0.5]), update_period=0 ) mul_ckf = wtf.Multiplier(index_id="ckf") leaf_c.new_child(mul_ckf) test_arr = npr.rand(2, dim_f, dim_f) strides = (test_arr.strides[0],) + np.diag(test_arr[0]).strides mul_kfg.new_child( mul_ckf, index_id_for_child="kf", shape_for_child=(dim_k, dim_f), strides_for_child=strides, ) leaf_g = wtf.LeafDirichlet( index_id="g", norm_axis=(), tensor=np.ones(dim_f - 1), update_period=0 ) mul_kf2 = wtf.Multiplier(index_id="kf") leaf_g.new_child(mul_kf2) mask = np.logical_not(np.eye(dim_f, dtype=bool)) mul_kfg.new_child( mul_kf2, slice_for_child=[slice(None), mask], shape_for_child=(dim_k, dim_f, dim_f - 1), ) add_kf = wtf.Adder(name="atoms", index_id="kf") mul_kf2.new_child(add_kf) mul_ckf.new_child(add_kf, index_id_for_child="kf", slice_for_child=(0, Ellipsis)) # leaf_ka = wtf.LeafDirichlet( # name="angle", # index_id="ka", # norm_axis=(1,), # tensor=np.ones((dim_k, dim_a)), # l2_norm_axis=(1,), # prior_shape=1 + 1e-4 * npr.rand(dim_k, dim_a), # ) # mul_ka = wtf.Multiplier(index_id="ka") # mul_ka.new_parents(leaf_k, leaf_ka) # mul_kab = wtf.Multiplier(index_id="kab") # mul_ka.new_child(mul_kab) # leaf_ka.new_child(mul_kab, index_id_for_child="kb") # leaf_abm = wtf.LeafDirichlet( # index_id="abm", # norm_axis=(2,), # tensor=np.array([[[1, 0, 0], [0, 1, 0]], [[0, 1, 0], [0, 0, 1]]]), # update_period=0, # ) # mul_km = wtf.Multiplier(index_id="km") # mul_km.new_parents(leaf_abm, mul_kab) # leaf_mnf = wtf.LeafDirichlet( # name="basis", # index_id="mnf", # norm_axis=(1, 2), # tensor=np.array( # [[[0, 0.5], [0.5, 0]], [[0.5, 0.5], [0, 0]], [[0.5, 0], [0, 0.5]]] # ), # update_period=0, # ) # mul_nkf = wtf.Multiplier(index_id="nkf", name="atoms") # mul_nkf.new_parents(leaf_mnf, mul_km) leaf_kt = wtf.LeafDirichlet( name="activations", index_id="kt", norm_axis=(1,), tensor=np.ones((dim_k, dim_t)) / dim_t, prior_shape=1, ) mul_tf = wtf.Multiplier(name="reconstruction", index_id="tf") leaf_kt.new_child(mul_tf) # mul_nkf.new_child(mul_tf, index_id_for_child="kf", slice_for_child=[0, Ellipsis]) add_kf.new_child(mul_tf) obs_tf = wtf.PosObserver(name="observations", index_id="tf", tensor=gt_tf) mul_tf.new_child(obs_tf) root = wtf.Root(name="root", verbose_iter=50, cost_computation_iter=10) obs_tf.new_child(root) return root
def make_sparse_nmf(prior_rate=0.001, obs=None, atoms=None): """ NMF with minimization of \\sum_{k != k'} P(k|t)P(k'|t)E(t) where P(k|t) are the activations and E(t) total energy at time t """ dim_f, dim_t, dim_k = 2, 100, 2 # gt_kf = npr.dirichlet(np.ones(dim_f), size=dim_k) gt_kf = np.array([[4.0, 1.0], [4.0, 3.0]]) gt_kf /= gt_kf.sum(1, keepdims=True) gt_tk = npr.gamma(shape=0.3, scale=100, size=(dim_t, dim_k)) gt_tf = np.dot(gt_tk, gt_kf) gt_tf += npr.rand(dim_t, dim_f) if obs is not None: gt_tf = obs leaf_t = wtf.LeafGamma( name="time_energy", index_id="t", tensor=np.ones(dim_t), prior_rate=prior_rate, prior_shape=1, ) leaf_tk = wtf.LeafDirichlet( name="activations", index_id="tk", norm_axis=(1,), tensor=np.ones((dim_t, dim_k)) / dim_k, prior_shape=1, ) mul_tk = wtf.Multiplier(index_id="tk") mul_tk.new_parents(leaf_t, leaf_tk) mul_tkl = wtf.Multiplier(name="activations_square", index_id="tkl") leaf_tk.new_child(mul_tkl, index_id_for_child="tl") mul_tk.new_child(mul_tkl) if atoms is None: atoms = np.ones((dim_k, dim_f)) / dim_f update_period = 1 else: update_period = 0 leaf_kf = wtf.LeafDirichlet( name="atoms", index_id="kf", norm_axis=(1,), tensor=atoms, prior_shape=1, update_period=update_period, ) mul_tf = wtf.Multiplier(name="reconstruction", index_id="tf") leaf_kf.new_child(mul_tf) test_arr = npr.rand(2, dim_k, dim_k) strides = (test_arr.strides[0],) + np.diag(test_arr[0]).strides mul_tkl.new_child( mul_tf, shape_for_child=(dim_t, dim_k), strides_for_child=strides, index_id_for_child="tk", ) obs_tf = wtf.PosObserver(name="observations", index_id="tf", tensor=gt_tf) mul_tf.new_child(obs_tf) root = wtf.Root(name="root", verbose_iter=50, cost_computation_iter=10) obs_tf.new_child(root) return root