예제 #1
0
def check_early_stopping_trained_iteration(work_dir, para_file):
    early_stop = False
    if os.path.isfile(os.path.join(work_dir, 'early_stopping.txt')):
        early_stop = True

    exp_name = parameters.get_string_parameters(
        os.path.join(work_dir, para_file), 'expr_name')
    TRAIN_LOGDIR = os.path.join(work_dir, exp_name, 'train')
    model_trained_iter = deeplab_train.get_trained_iteration(TRAIN_LOGDIR)

    return early_stop, model_trained_iter
예제 #2
0
def get_early_stopping_trained_iteration(work_dir, para_file, train_output):
    if os.path.isfile(os.path.join(work_dir, 'early_stopping.txt')):
        train_output['early_stopping'].append('Yes')
    else:
        train_output['early_stopping'].append('No')

    exp_name = parameters.get_string_parameters(
        os.path.join(work_dir, para_file), 'expr_name')
    TRAIN_LOGDIR = os.path.join(work_dir, exp_name, 'train')
    trained_iter = deeplab_train.get_trained_iteration(TRAIN_LOGDIR)
    train_output['model_train_iter'].append(trained_iter)

    return True
예제 #3
0
def predict_one_image_deeplab(deeplab_inf_script,
                              para_file,
                              network_ini,
                              save_dir,
                              inf_list_file,
                              gpuid=None,
                              trained_model=None):

    done_indicator = '%s_done' % inf_list_file
    if os.path.isfile(done_indicator):
        basic.outputlogMessage('warning, %s exist, skip prediction' %
                               done_indicator)
        return
    # use a specific GPU for prediction, only inference one image
    time0 = time.time()
    if gpuid is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gpuid)

    # command_string = deeplab_predict_script + ' '+ para_file + ' ' + save_dir + ' ' + inf_list_file + ' ' + str(gpuid)
    # # status, result = basic.exec_command_string(command_string)  # this will wait command finished
    # # os.system(command_string + "&")  # don't know when it finished
    # os.system(command_string )      # this work

    if trained_model is None:
        WORK_DIR = os.getcwd()
        expr_name = parameters.get_string_parameters(para_file, 'expr_name')
        EXP_FOLDER = expr_name
        EXPORT_DIR = os.path.join(WORK_DIR, EXP_FOLDER, 'export')
        TRAIN_LOGDIR = os.path.join(WORK_DIR, EXP_FOLDER, 'train')
        iteration_num = get_trained_iteration(TRAIN_LOGDIR)
        EXPORT_PATH = os.path.join(
            EXPORT_DIR, 'frozen_inference_graph_%s.pb' % iteration_num)
        frozen_graph_path = EXPORT_PATH
    else:
        frozen_graph_path = trained_model

    if os.path.isfile(frozen_graph_path) is False:
        raise IOError('cannot find trained model: %s' % frozen_graph_path)

    inf_batch_size = parameters.get_digit_parameters_None_if_absence(
        network_ini, 'inf_batch_size', 'int')
    if inf_batch_size is None:
        raise ValueError('inf_batch_size not set in %s' % network_ini)

    command_string = tf1x_python + ' '  +  deeplab_inf_script \
                + ' --inf_para_file='+para_file \
                + ' --inf_list_file='+inf_list_file \
                + ' --inf_batch_size='+str(inf_batch_size) \
                + ' --inf_output_dir='+save_dir \
                + ' --frozen_graph_path='+frozen_graph_path
    # status, result = basic.exec_command_string(command_string)  # this will wait command finished
    # os.system(command_string + "&")  # don't know when it finished
    res = os.system(command_string)  # this work
    # print('command_string deeplab_inf_script: res',res)
    if res != 0:
        sys.exit(1)

    duration = time.time() - time0
    os.system(
        'echo "$(date): time cost of inference for image in %s: %.2f seconds">>"time_cost.txt"'
        % (inf_list_file, duration))
    # write a file to indicate that the prediction has done.
    os.system('echo %s > %s_done' % (inf_list_file, inf_list_file))
예제 #4
0
def main(options, args):

    print("%s : export the frozen inference graph" %
          os.path.basename(sys.argv[0]))

    para_file = args[0]
    if os.path.isfile(para_file) is False:
        raise IOError('File %s not exists in current folder: %s' %
                      (para_file, os.getcwd()))

    network_setting_ini = parameters.get_string_parameters(
        para_file, 'network_setting_ini')
    tf_research_dir = parameters.get_directory_None_if_absence(
        network_setting_ini, 'tf_research_dir')
    print(tf_research_dir)
    if tf_research_dir is None:
        raise ValueError('tf_research_dir is not in %s' % para_file)
    if os.path.isdir(tf_research_dir) is False:
        raise ValueError('%s does not exist' % tf_research_dir)
    if os.getenv('PYTHONPATH'):
        os.environ['PYTHONPATH'] = os.getenv(
            'PYTHONPATH') + ':' + tf_research_dir + ':' + os.path.join(
                tf_research_dir, 'slim')
    else:
        os.environ['PYTHONPATH'] = tf_research_dir + ':' + os.path.join(
            tf_research_dir, 'slim')

    global tf1x_python
    tf1x_python = parameters.get_file_path_parameters(network_setting_ini,
                                                      'tf1x_python')

    deeplab_dir = os.path.join(tf_research_dir, 'deeplab')
    WORK_DIR = os.getcwd()

    expr_name = parameters.get_string_parameters(para_file, 'expr_name')

    EXP_FOLDER = expr_name
    TRAIN_LOGDIR = os.path.join(WORK_DIR, EXP_FOLDER, 'train')
    EXPORT_DIR = os.path.join(WORK_DIR, EXP_FOLDER, 'export')

    inf_output_stride = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'inf_output_stride', 'int')
    inf_atrous_rates1 = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'inf_atrous_rates1', 'int')
    inf_atrous_rates2 = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'inf_atrous_rates2', 'int')
    inf_atrous_rates3 = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'inf_atrous_rates3', 'int')

    # depth_multiplier default is 1.0.
    depth_multiplier = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'depth_multiplier', 'float')

    decoder_output_stride = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'decoder_output_stride', 'int')
    aspp_convs_filters = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'aspp_convs_filters', 'int')

    model_variant = parameters.get_string_parameters(network_setting_ini,
                                                     'model_variant')
    num_classes_noBG = parameters.get_digit_parameters_None_if_absence(
        para_file, 'NUM_CLASSES_noBG', 'int')
    assert num_classes_noBG != None
    b_initialize_last_layer = parameters.get_bool_parameters(
        para_file, 'b_initialize_last_layer')
    if b_initialize_last_layer is False:
        pre_trained_tar = parameters.get_string_parameters(
            network_setting_ini, 'TF_INIT_CKPT')
        if pre_trained_tar in pre_trained_tar_21_classes:
            print(
                'warning, pretrained model %s is trained with 21 classes, set num_of_classes to 21'
                % pre_trained_tar)
            num_classes_noBG = 20
        if pre_trained_tar in pre_trained_tar_19_classes:
            print(
                'warning, pretrained model %s is trained with 19 classes, set num_of_classes to 19'
                % pre_trained_tar)
            num_classes_noBG = 18
    num_of_classes = num_classes_noBG + 1

    image_crop_size = parameters.get_string_list_parameters(
        para_file, 'image_crop_size')
    if len(image_crop_size) != 2 and image_crop_size[0].isdigit(
    ) and image_crop_size[1].isdigit():
        raise ValueError('image_crop_size should be height,width')

    iteration_num = get_trained_iteration(TRAIN_LOGDIR)

    multi_scale = parameters.get_digit_parameters_None_if_absence(
        network_setting_ini, 'export_multi_scale', 'int')

    export_script = os.path.join(deeplab_dir, 'export_model.py')
    CKPT_PATH = os.path.join(TRAIN_LOGDIR, 'model.ckpt-%s' % iteration_num)

    EXPORT_PATH = os.path.join(EXPORT_DIR,
                               'frozen_inference_graph_%s.pb' % iteration_num)
    if os.path.isfile(EXPORT_PATH):
        basic.outputlogMessage('%s exists, skipping exporting models' %
                               EXPORT_PATH)
        return
    export_graph(export_script, CKPT_PATH, EXPORT_PATH, model_variant,
                 num_of_classes, inf_atrous_rates1, inf_atrous_rates2,
                 inf_atrous_rates3, inf_output_stride, image_crop_size[0],
                 image_crop_size[1], multi_scale, depth_multiplier,
                 decoder_output_stride, aspp_convs_filters)