예제 #1
0
def main():
    print("Starting tests for wotan...")

    numpy.testing.assert_almost_equal(t14(R_s=1, M_s=1, P=365),
                                      0.6490025258902046)

    numpy.testing.assert_almost_equal(
        t14(R_s=1, M_s=1, P=365, small_planet=True), 0.5403690143737738)
    print("Transit duration correct.")

    numpy.random.seed(seed=0)  # reproducibility

    print("Slide clipper...")
    points = 1000
    time = numpy.linspace(0, 30, points)
    flux = 1 + numpy.sin(time) / points
    noise = numpy.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):
        if i % 75 == 0:
            flux[i:i + 5] -= 0.0004  # Add some transits
            flux[i + 50:i + 52] += 0.0002  # and flares

    clipped = slide_clip(time,
                         flux,
                         window_length=0.5,
                         low=3,
                         high=2,
                         method='mad',
                         center='median')
    numpy.testing.assert_almost_equal(numpy.nansum(clipped), 948.9926368754939)
    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=3, color='black')
    plt.scatter(time, clipped, s=3, color='orange')
    plt.show()
    """

    # TESS test
    print('Loading TESS data from archive.stsci.edu...')
    path = 'https://archive.stsci.edu/hlsps/tess-data-alerts/'
    filename = "hlsp_tess-data-alerts_tess_phot_00062483237-s01_tess_v1_lc.fits"
    #path = 'P:/P/Dok/tess_alarm/'
    #filename = "hlsp_tess-data-alerts_tess_phot_00062483237-s01_tess_v1_lc.fits"
    #filename = 'P:/P/Dok/tess_alarm/hlsp_tess-data-alerts_tess_phot_00077031414-s02_tess_v1_lc.fits'
    #filename = 'tess2018206045859-s0001-0000000201248411-111-s_llc.fits'
    time, flux = load_file(path + filename)

    window_length = 0.5

    print("Detrending 1 (biweight)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   edge_cutoff=1,
                                   break_tolerance=0.1,
                                   return_trend=True,
                                   cval=5.0)

    numpy.testing.assert_equal(len(trend_lc), 20076)
    numpy.testing.assert_almost_equal(numpy.nanmax(trend_lc),
                                      28754.985299070882)
    numpy.testing.assert_almost_equal(numpy.nanmin(trend_lc),
                                      28615.108124724477)
    numpy.testing.assert_almost_equal(trend_lc[500], 28671.686308143515)

    numpy.testing.assert_equal(len(flatten_lc), 20076)
    numpy.testing.assert_almost_equal(numpy.nanmax(flatten_lc),
                                      1.0034653549250616)
    numpy.testing.assert_almost_equal(numpy.nanmin(flatten_lc),
                                      0.996726610702177)
    numpy.testing.assert_almost_equal(flatten_lc[500], 1.000577429565131)

    print("Detrending 2 (andrewsinewave)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='andrewsinewave',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.15471987987,
                                      decimal=2)

    print("Detrending 3 (welsch)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='welsch',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.16764691235,
                                      decimal=2)

    print("Detrending 4 (hodges)...")
    flatten_lc, trend_lc = flatten(time[:1000],
                                   flux[:1000],
                                   window_length,
                                   method='hodges',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      994.0110525909206,
                                      decimal=2)

    print("Detrending 5 (median)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='median',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.122065014355,
                                      decimal=2)

    print("Detrending 6 (mean)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='mean',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.032473037714,
                                      decimal=2)

    print("Detrending 7 (trim_mean)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='trim_mean',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.095164910334,
                                      decimal=2)

    print("Detrending 8 (supersmoother)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='supersmoother',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18123.00632204841,
                                      decimal=2)

    print("Detrending 9 (hspline)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length,
                                   method='hspline',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18123.07625225313,
                                      decimal=2)

    print("Detrending 10 (cofiam)...")
    flatten_lc, trend_lc = flatten(time[:2000],
                                   flux[:2000],
                                   window_length,
                                   method='cofiam',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      1948.9999999987976,
                                      decimal=2)

    print("Detrending 11 (savgol)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length=301,
                                   method='savgol',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18123.003465539354,
                                      decimal=2)

    print("Detrending 12 (medfilt)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   window_length=301,
                                   method='medfilt',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18123.22609806557,
                                      decimal=2)

    print("Detrending 12 (gp squared_exp)...")
    flatten_lc, trend_lc1 = flatten(time[:2000],
                                    flux[:2000],
                                    method='gp',
                                    kernel='squared_exp',
                                    kernel_size=10,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      1948.99958552324,
                                      decimal=2)

    print("Detrending 13 (gp squared_exp robust)...")
    flatten_lc, trend_lc1 = flatten(time[:2000],
                                    flux[:2000],
                                    method='gp',
                                    kernel='squared_exp',
                                    kernel_size=10,
                                    robust=True,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      1948.8820772313468,
                                      decimal=2)

    print("Detrending 14 (gp matern)...")
    flatten_lc, trend_lc2 = flatten(time[:2000],
                                    flux[:2000],
                                    method='gp',
                                    kernel='matern',
                                    kernel_size=10,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      1949.0001583058202,
                                      decimal=2)

    print("Detrending 15 (gp periodic)...")
    flatten_lc, trend_lc2 = flatten(time[:2000],
                                    flux[:2000],
                                    method='gp',
                                    kernel='periodic',
                                    kernel_size=1,
                                    kernel_period=10,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      1948.9999708985608,
                                      decimal=2)

    time_synth = numpy.linspace(0, 30, 200)
    flux_synth = numpy.sin(time_synth) + numpy.random.normal(0, 0.1, 200)
    flux_synth = 1 + flux_synth / 100
    time_synth *= 1.5
    print("Detrending 16 (gp periodic_auto)...")
    flatten_lc, trend_lc2 = flatten(time_synth,
                                    flux_synth,
                                    method='gp',
                                    kernel='periodic_auto',
                                    kernel_size=1,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 200, decimal=1)

    print("Detrending 17 (rspline)...")
    flatten_lc, trend_lc2 = flatten(time,
                                    flux,
                                    method='rspline',
                                    window_length=1,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18121.812790732245,
                                      decimal=2)

    print("Detrending 18 (huber)...")
    flatten_lc, trend_lc = flatten(time[:1000],
                                   flux[:1000],
                                   method='huber',
                                   window_length=0.5,
                                   edge_cutoff=0,
                                   break_tolerance=0.4,
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      994.01102,
                                      decimal=2)

    print("Detrending 19 (winsorize)...")
    flatten_lc, trend_lc2 = flatten(time,
                                    flux,
                                    method='winsorize',
                                    window_length=0.5,
                                    edge_cutoff=0,
                                    break_tolerance=0.4,
                                    proportiontocut=0.1,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.064587196448,
                                      decimal=2)

    print("Detrending 20 (pspline)...")
    flatten_lc, trend_lc = flatten(time,
                                   flux,
                                   method='pspline',
                                   return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18121.832133916843,
                                      decimal=2)

    print("Detrending 21 (hampelfilt)...")
    flatten_lc, trend_lc5 = flatten(time,
                                    flux,
                                    method='hampelfilt',
                                    window_length=0.5,
                                    cval=3,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.158072498867,
                                      decimal=2)

    print("Detrending 22 (lowess)...")
    flatten_lc, trend_lc1 = flatten(time,
                                    flux,
                                    method='lowess',
                                    window_length=1,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18123.08085676265,
                                      decimal=2)

    print("Detrending 23 (huber_psi)...")
    flatten_lc, trend_lc1 = flatten(time,
                                    flux,
                                    method='huber_psi',
                                    window_length=0.5,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.122065014355,
                                      decimal=2)

    print("Detrending 24 (tau)...")
    flatten_lc, trend_lc2 = flatten(time,
                                    flux,
                                    method='tau',
                                    window_length=0.5,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      18119.02772621119,
                                      decimal=2)

    import numpy as np
    points = 1000
    time = np.linspace(0, 30, points)
    flux = 1 + np.sin(time) / points
    noise = np.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):
        if i % 75 == 0:
            flux[i:i + 5] -= 0.0004  # Add some transits
            flux[i + 50:i + 52] += 0.0002  # and flares

    print("Detrending 25a (hampel 17A)...")
    flatten_lc, trend_lc1 = flatten(time,
                                    flux,
                                    method='hampel',
                                    cval=(1.7, 3.4, 8.5),
                                    window_length=0.5,
                                    return_trend=True)

    print("Detrending 25b (hampel 25A)...")
    flatten_lc, trend_lc2 = flatten(time,
                                    flux,
                                    method='hampel',
                                    cval=(2.5, 4.5, 9.5),
                                    window_length=0.5,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      997.9994362858843,
                                      decimal=2)

    print("Detrending 26 (ramsay)...")
    flatten_lc, trend_lc3 = flatten(time,
                                    flux,
                                    method='ramsay',
                                    cval=0.3,
                                    window_length=0.5,
                                    return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc),
                                      997.9974021484584,
                                      decimal=2)
    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=1, color='black')
    plt.plot(time[:len(trend_lc1)], trend_lc1, color='blue', linewidth=2)
    plt.plot(time[:len(trend_lc1)], trend_lc2, color='red', linewidth=2, linestyle='dashed')
    plt.show()
    plt.close()
    #plt.scatter(time, flatten_lc, s=1, color='black')
    #plt.show()
    """

    print('All tests completed.')
예제 #2
0
def main():
    print("Starting tests for wotan...")

    numpy.testing.assert_almost_equal(t14(R_s=1, M_s=1, P=365), 0.6490025258902046)

    numpy.testing.assert_almost_equal(
        t14(R_s=1, M_s=1, P=365, small_planet=True), 0.5403690143737738
    )
    print("Transit duration correct.")

    numpy.random.seed(seed=0)  # reproducibility

    print("Slide clipper...")
    points = 1000
    time = numpy.linspace(0, 30, points)
    flux = 1 + numpy.sin(time) / points
    noise = numpy.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):
        if i % 75 == 0:
            flux[i : i + 5] -= 0.0004  # Add some transits
            flux[i + 50 : i + 52] += 0.0002  # and flares

    clipped = slide_clip(
        time, flux, window_length=0.5, low=3, high=2, method="mad", center="median"
    )
    numpy.testing.assert_almost_equal(numpy.nansum(clipped), 948.9926368754939)

    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=3, color='black')
    plt.scatter(time, clipped, s=3, color='orange')
    plt.show()
    """

    # TESS test
    print("Loading TESS data from archive.stsci.edu...")
    path = "https://archive.stsci.edu/hlsps/tess-data-alerts/"
    # path = 'P:/P/Dok/tess_alarm/'
    filename = "hlsp_tess-data-alerts_tess_phot_00062483237-s01_tess_v1_lc.fits"
    time, flux = load_file(path + filename)

    window_length = 0.5
    print("Detrending 1 (biweight)...")
    flatten_lc, trend_lc = flatten(
        time,
        flux,
        window_length,
        edge_cutoff=1,
        break_tolerance=0.1,
        return_trend=True,
        cval=5.0,
    )

    numpy.testing.assert_equal(len(trend_lc), 20076)
    numpy.testing.assert_almost_equal(
        numpy.nanmax(trend_lc), 28755.03811866676, decimal=2
    )
    numpy.testing.assert_almost_equal(
        numpy.nanmin(trend_lc), 28615.110229935075, decimal=2
    )
    numpy.testing.assert_almost_equal(trend_lc[500], 28671.650565730513, decimal=2)

    numpy.testing.assert_equal(len(flatten_lc), 20076)
    numpy.testing.assert_almost_equal(
        numpy.nanmax(flatten_lc), 1.0034653549250616, decimal=2
    )
    numpy.testing.assert_almost_equal(
        numpy.nanmin(flatten_lc), 0.996726610702177, decimal=2
    )
    numpy.testing.assert_almost_equal(flatten_lc[500], 1.000577429565131, decimal=2)

    print("Detrending 2 (andrewsinewave)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="andrewsinewave", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.15456308313, decimal=2
    )

    print("Detrending 3 (welsch)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="welsch", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.16770590837, decimal=2
    )

    print("Detrending 4 (hodges)...")
    flatten_lc, trend_lc = flatten(
        time[:1000], flux[:1000], window_length, method="hodges", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 996.0113241694287, decimal=2
    )

    print("Detrending 5 (median)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="median", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.12166552401, decimal=2
    )

    print("Detrending 6 (mean)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="mean", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.032058753546, decimal=2
    )

    print("Detrending 7 (trim_mean)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="trim_mean", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.094751124332, decimal=2
    )

    print("Detrending 8 (supersmoother)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="supersmoother", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.00632204841, decimal=2
    )

    print("Detrending 9 (hspline)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length, method="hspline", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.082601463717, decimal=1
    )

    print("Detrending 10 (cofiam)...")
    flatten_lc, trend_lc = flatten(
        time[:2000], flux[:2000], window_length, method="cofiam", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 1948.9999999987976, decimal=1
    )

    print("Detrending 11 (savgol)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length=301, method="savgol", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.003465539354, decimal=1
    )

    print("Detrending 12 (medfilt)...")
    flatten_lc, trend_lc = flatten(
        time, flux, window_length=301, method="medfilt", return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.22609806557, decimal=1
    )

    print("Detrending 12 (gp squared_exp)...")
    flatten_lc, trend_lc1 = flatten(
        time[:2000],
        flux[:2000],
        method="gp",
        kernel="squared_exp",
        kernel_size=10,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 1948.9672036416687, decimal=2
    )

    print("Detrending 13 (gp squared_exp robust)...")
    flatten_lc, trend_lc1 = flatten(
        time[:2000],
        flux[:2000],
        method="gp",
        kernel="squared_exp",
        kernel_size=10,
        robust=True,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 1948.8820772313468, decimal=2
    )

    print("Detrending 14 (gp matern)...")
    flatten_lc, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method="gp",
        kernel="matern",
        kernel_size=10,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 1948.9672464898367, decimal=2
    )

    print("Detrending 15 (gp periodic)...")
    flatten_lc, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method="gp",
        kernel="periodic",
        kernel_size=1,
        kernel_period=10,
        return_trend=True,
    )

    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 1948.9999708985608, decimal=2
    )

    time_synth = numpy.linspace(0, 30, 200)
    flux_synth = numpy.sin(time_synth) + numpy.random.normal(0, 0.1, 200)
    flux_synth = 1 + flux_synth / 100
    time_synth *= 1.5
    print("Detrending 16 (gp periodic_auto)...")
    flatten_lc, trend_lc2 = flatten(
        time_synth,
        flux_synth,
        method="gp",
        kernel="periodic_auto",
        kernel_size=1,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 200, decimal=1)

    print("Detrending 17 (rspline)...")
    flatten_lc, trend_lc2 = flatten(
        time, flux, method="rspline", window_length=1, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18121.812790732245, decimal=2
    )
    """
    print("Detrending 18 (huber)...")
    flatten_lc, trend_lc = flatten(
        time[:1000],
        flux[:1000],
        method='huber',
        window_length=0.5,
        edge_cutoff=0,
        break_tolerance=0.4,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 996.0112964009066, decimal=2)
    """
    print("Detrending 19 (winsorize)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method="winsorize",
        window_length=0.5,
        edge_cutoff=0,
        break_tolerance=0.4,
        proportiontocut=0.1,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.064149766662, decimal=2
    )

    print("Detrending 20 (pspline)...")
    flatten_lc, trend_lc = flatten(time, flux, method="pspline", return_trend=True)
    # import matplotlib.pyplot as plt
    # plt.scatter(time, flux, s=3, color='black')
    # plt.plot(time, trend_lc)
    # plt.show()

    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18122.740535799767, decimal=2
    )

    print("Detrending 21 (hampelfilt)...")
    flatten_lc, trend_lc5 = flatten(
        time, flux, method="hampelfilt", window_length=0.5, cval=3, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.157973016467, decimal=2
    )

    print("Detrending 22 (lowess)...")
    flatten_lc, trend_lc1 = flatten(
        time, flux, method="lowess", window_length=1, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.039744125545, decimal=2
    )

    print("Detrending 23 (huber_psi)...")
    flatten_lc, trend_lc1 = flatten(
        time, flux, method="huber_psi", window_length=0.5, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.110893063527, decimal=2
    )

    print("Detrending 24 (tau)...")
    flatten_lc, trend_lc2 = flatten(
        time, flux, method="tau", window_length=0.5, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18123.026005725977, decimal=2
    )

    print("Detrending 25 (cosine)...")
    flatten_lc, trend_lc2 = flatten(
        time, flux, method="cosine", window_length=0.5, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18122.999999974905, decimal=2
    )

    print("Detrending 25 (cosine robust)...")
    flatten_lc, trend_lc2 = flatten(
        time, flux, method="cosine", robust=True, window_length=0.5, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 18122.227938535038, decimal=2
    )

    import numpy as np

    points = 1000
    time = numpy.linspace(0, 30, points)
    flux = 1 + numpy.sin(time) / points
    noise = numpy.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):
        if i % 75 == 0:
            flux[i : i + 5] -= 0.0004  # Add some transits
            flux[i + 50 : i + 52] += 0.0002  # and flares

    print("Detrending 26 (hampel 17A)...")
    flatten_lc, trend_lc1 = flatten(
        time,
        flux,
        method="hampel",
        cval=(1.7, 3.4, 8.5),
        window_length=0.5,
        return_trend=True,
    )

    print("Detrending 27 (hampel 25A)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method="hampel",
        cval=(2.5, 4.5, 9.5),
        window_length=0.5,
        return_trend=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 999.9992212031945, decimal=2
    )

    print("Detrending 28 (ramsay)...")
    flatten_lc, trend_lc3 = flatten(
        time, flux, method="ramsay", cval=0.3, window_length=0.5, return_trend=True
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 999.9970566765148, decimal=2
    )

    print("Detrending 29 (ridge)...")
    flatten_lc, trend_lc1 = flatten(
        time, flux, window_length=0.5, method="ridge", return_trend=True, cval=1
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 999.9999958887022, decimal=1
    )

    print("Detrending 30 (lasso)...")
    flatten_lc, trend_lc2 = flatten(
        time, flux, window_length=0.5, method="lasso", return_trend=True, cval=1
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 999.9999894829843, decimal=1
    )

    print("Detrending 31 (elasticnet)...")
    flatten_lc, trend_lc3 = flatten(
        time, flux, window_length=0.5, method="elasticnet", return_trend=True, cval=1
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 999.9999945063338, decimal=1
    )

    # Test of transit mask
    print("Testing transit_mask")
    filename = "hlsp_tess-data-alerts_tess_phot_00207081058-s01_tess_v1_lc.fits"
    time, flux = load_file(path + filename)

    from wotan import transit_mask

    mask = transit_mask(time=time, period=14.77338, duration=0.21060, T0=1336.141095)
    numpy.testing.assert_almost_equal(numpy.sum(mask), 302, decimal=1)

    print("Detrending 32 (transit_mask cosine)")
    flatten_lc1, trend_lc1 = flatten(
        time,
        flux,
        method="cosine",
        window_length=0.4,
        return_trend=True,
        robust=True,
        mask=mask,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc1), 18119.281265446625, decimal=1
    )

    print("Detrending 33 (transit_mask lowess)")
    flatten_lc2, trend_lc2 = flatten(
        time,
        flux,
        method="lowess",
        window_length=0.8,
        return_trend=True,
        robust=True,
        mask=mask,
    )
    # print(numpy.nansum(flatten_lc2))
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc2), 18119.30865711536, decimal=1
    )

    print("Detrending 34 (transit_mask GP)")
    mask = transit_mask(time=time[:2000], period=100, duration=0.3, T0=1327.4)
    flatten_lc2, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method="gp",
        kernel="matern",
        kernel_size=0.8,
        return_trend=True,
        robust=True,
        mask=mask,
    )
    # print(numpy.nansum(flatten_lc2))
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc2), 1948.9000170463796, decimal=1
    )

    print("Detrending 35 (pspline full features)")
    flatten_lc, trend_lc, nsplines = flatten(
        time,
        flux,
        method="pspline",
        max_splines=100,
        edge_cutoff=0.5,
        return_trend=True,
        return_nsplines=True,
        verbose=True,
    )

    # print('lightcurve was split into', len(nsplines), 'segments')
    # print('chosen number of splines', nsplines)
    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=3, color='black')
    plt.plot(time, trend_lc)
    plt.show()

    plt.scatter(time, flatten_lc, s=3, color='black')
    plt.show()
    """
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 16678.312693036027, decimal=1
    )

    print("Detrending 36 (pspline variable PSPLINES_STDEV_CUT)")
    flatten_lc, trend_lc, nsplines = flatten(
        time,
        flux,
        method="pspline",
        max_splines=100,
        edge_cutoff=0.5,
        stdev_cut=3,
        return_trend=True,
        return_nsplines=True,
        verbose=True,
    )
    numpy.testing.assert_almost_equal(
        numpy.nansum(flatten_lc), 16678.292210380347, decimal=2
    )

    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=1, color='black')
    plt.plot(time, trend_lc, color='red', linewidth=2, linestyle='dashed')
    plt.show()
    plt.close()
    """

    print("All tests completed.")
t0 = time.time()
lcf = lightkurve.search_lightcurve("TIC 251848941", mission="TESS", cadence="short", sector=[2], author="SPOC")\
    .download_all()
lc = lcf.stitch().remove_nans()
lc = lc.remove_outliers(sigma_lower=float('inf'), sigma_upper=3)
lc_time = lc.time.value
flux = lc.flux.value
cadence = 2
window_length = 25 / cadence
flux = savgol_filter(flux, 11, 3)
R_s = 1.1
M_s = 1.3
P_min = 0.5
P_max = 22
ld_coefficients = [0.2, 0.1]
min_duration = wotan.t14(R_s, M_s, P_min, True)
max_duration = wotan.t14(R_s, M_s, P_max, True)
duration_grid = np.arange(min_duration * 24 * 60 // cadence,
                          max_duration * 24 * 60 // cadence, 1)


def calculate_semi_major_axis(period, star_mass):
    G = 6.674e-11
    period_seconds = period * 24. * 3600.
    mass_kg = star_mass * 2.e30
    a1 = (G * mass_kg * period_seconds**2 / 4. / (np.pi**2))**(1. / 3.)
    return a1 / 1.496e11


a_au = calculate_semi_major_axis(0.5, M_s)
a_Rs = a_au / (R_s * 0.00465047)
예제 #4
0
def analyse(det_met, time_i, flatten_i, n_tra, ab, mass, mass_min, mass_max,
            radius, radius_min, radius_max, id_run):
    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    # Detrending of the data using WOTAN
    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    # By default is used a 'biweight' method.
    # It will detrend the lightcurve 'N_detrends' independent times
    from wotan import flatten

    if det_met == 2:
        wl_min = 1
        wl_max = 12
    else:
        tdur = t14(
            R_s=radius, M_s=mass, P=P_protec, small_planet=True
        )  # we define the typical duration of a small planet in this star
        wl_min = 3 * tdur  # minimum transit duration
        wl_max = 20 * tdur  # maximum transit duration

    wl_step = (wl_max - wl_min) / N_detrends
    wl = np.arange(
        wl_min, wl_max,
        wl_step)  # we define all the posibles window_length that we apply
    global_flatten_lc = np.zeros((len(wl), len(flatten_i)))
    global_trend_lc = np.zeros((len(wl), len(flatten_i)))

    for i in range(0, len(wl)):
        if det_met == 2:
            flatten_lc, trend_lc = flatten(time_i,
                                           flatten_i,
                                           method='gp',
                                           kernel='matern',
                                           kernel_size=wl[i],
                                           return_trend=True,
                                           break_tolerance=0.5)
        else:
            flatten_lc, trend_lc = flatten(time_i,
                                           flatten_i,
                                           window_length=wl[i],
                                           return_trend=True,
                                           method='biweight',
                                           break_tolerance=0.5)
        global_flatten_lc[i] = flatten_lc
        global_trend_lc[i] = trend_lc

    ## save in the log file all the information concerning the detrendins applied
    warnings.filterwarnings("ignore")

    global_final = np.zeros((len(wl), len(flatten_i)))

    logprint('\n MODELS IN THE DETRENDING - Run ' + str(id_run))
    logprint('========================================\n')

    if det_met == 2:
        det_model = 'kernel_size:'
    else:
        det_model = 'window_size:'

    bins = len(time_i) * 2 / minutes
    bin_means, bin_edges, binnumber = stats.binned_statistic(time_i,
                                                             flatten_i,
                                                             statistic='mean',
                                                             bins=bins)
    bin_stds, _, _ = stats.binned_statistic(time_i,
                                            flatten_i,
                                            statistic='std',
                                            bins=bins)
    bin_width = (bin_edges[1] - bin_edges[0])
    bin_centers = bin_edges[1:] - bin_width / 2

    logprint('PDCSAP_FLUX_' + str(id_run), '\t ', ' ------ ', '\t', '------',
             '\t', '\t', 'RMS (ppm):',
             np.std(flatten_i) * 1e6, '\t', 'RMS_10min (ppm):',
             np.std(bin_means[~np.isnan(bin_means)]) * 1e6)
    for i in range(len(wl)):
        flatten = sigma_clip(global_flatten_lc[i],
                             sigma_lower=20,
                             sigma_upper=3)
        global_final[i] = flatten
        bins_i = len(time_i) * 2 / minutes
        bin_means_i, bin_edges_i, binnumber_i = stats.binned_statistic(
            time_i, flatten, statistic='mean', bins=bins_i)
        bin_stds_i, _, _ = stats.binned_statistic(time_i,
                                                  flatten,
                                                  statistic='std',
                                                  bins=bins_i)
        bin_width_i = (bin_edges_i[1] - bin_edges_i[0])
        bin_centers_i = bin_edges_i[1:] - bin_width_i / 2
        logprint('flatten_lc%s' % i, '\t ', 'trend_lc%s' % i, '\t', det_model,
                 format(wl[i], '0.4f'), '\t', 'RMS (ppm):',
                 np.std(flatten) * 1e6, '\t', 'RMS_10min (ppm):',
                 np.std(bin_means_i[~np.isnan(bin_means_i)]) * 1e6)

    ## save in a plot all the detrendings and all the data to inspect visually.
    cases = np.zeros((len(wl), 1))
    for i in range(len(wl)):
        cases[i] = wl[i]

    figsize = (8, 8)  #x,y
    cols = 3
    rows = len(cases) // cols

    shift = 2 * (1.0 - (np.min(flatten_i))
                 )  #shift in the between the raw and detrended data
    ylim_max = 1.0 + 3 * (np.max(flatten_i) - 1.0
                          )  #shift in the between the raw and detrended data
    ylim_min = 1.0 - 2.0 * shift  #shift in the between the raw and detrended data

    fig1, axs = plt.subplots(rows,
                             cols,
                             figsize=figsize,
                             constrained_layout=True)
    axs = trim_axs(axs, len(cases))
    for ax, case in zip(axs, cases):
        if det_met == 2:
            ax.set_title('ks=%s' % str(np.around(case, decimals=4)))
        else:
            ax.set_title('ws=%s' % str(np.around(case, decimals=4)))

        bins_i = len(time_i) * 2 / minutes
        bin_means_i, bin_edges_i, binnumber_i = stats.binned_statistic(
            time_i,
            global_final[np.nonzero(cases == case)[0][0]],
            statistic='mean',
            bins=bins_i)
        bin_stds_i, _, _ = stats.binned_statistic(
            time_i,
            global_final[np.nonzero(cases == case)[0][0]],
            statistic='std',
            bins=bins_i)
        bin_width_i = (bin_edges_i[1] - bin_edges_i[0])
        bin_centers_i = bin_edges_i[1:] - bin_width_i / 2

        ax.plot(time_i,
                flatten_i,
                linewidth=0.05,
                color='black',
                alpha=0.75,
                rasterized=True)
        ax.plot(time_i,
                global_trend_lc[np.nonzero(cases == case)[0][0]],
                linewidth=1,
                color='orange',
                alpha=1.0)
        ax.plot(time_i,
                global_final[np.nonzero(cases == case)[0][0]] - shift,
                linewidth=0.05,
                color='teal',
                alpha=0.75,
                rasterized=True)
        ax.plot(bin_centers_i,
                bin_means_i - shift,
                marker='.',
                markersize=2,
                color='firebrick',
                alpha=0.5,
                linestyle='none',
                rasterized=True)

        ax.set_ylim(ylim_min, ylim_max)
        plt.savefig('Detrends_' + 'run_' + str(id_run) + '_TIC' + str(TIC_ID) +
                    '.png',
                    dpi=200)

    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    # Search of signals in the raw data
    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    logprint('\n SEARCH OF SIGNALS - Run', id_run)
    logprint('=================================\n')

    logprint('PDCSAP_FLUX_' + str(id_run), '\t', 'Period', '\t', 'Per_err',
             '\t', 'N.Tran', '\t', 'Mean Depth(ppt)', '\t', 'T. dur(min)',
             '\t', 'T0', '\t', 'SNR', '\t', 'SDE', '\t', 'FAP\n')
    model = transitleastsquares(time_i, flatten_i)
    results_pdcsap = model.power(u=ab,
                                 M_star=mass,
                                 M_star_min=mass_min,
                                 M_star_max=mass_max,
                                 R_star=radius,
                                 R_star_min=radius_min,
                                 R_star_max=radius_max,
                                 period_min=Pmin,
                                 period_max=Pmax,
                                 n_transits_min=n_tra,
                                 show_progress_bar=False)
    x = []

    if results_pdcsap.T0 != 0:
        for j in range(0, len(results_pdcsap.transit_depths)):
            # print (results.transit_depths[i])
            x = np.append(x, results_pdcsap.transit_depths[j])
            x = x[~np.isnan(x)]
            depth = (1. - np.mean(x)) * 100 / 0.1  #we change to ppt units
    else:
        depth = results_pdcsap.transit_depths

    logprint('-----', '\t ', format(results_pdcsap.period, '.5f'), '\t ',
             format(results_pdcsap.period_uncertainty, '.6f'),
             '\t ', results_pdcsap.distinct_transit_count, '\t',
             format(depth, '.3f'), '\t',
             format(results_pdcsap.duration * 24 * 60,
                    '.1f'), '\t', results_pdcsap.T0, '\t ',
             format(results_pdcsap.snr, '.3f'), '\t ',
             format(results_pdcsap.SDE, '.3f'), '\t ', results_pdcsap.FAP)
    logprint('\n')

    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    # Saving a plot of the best signal from raw data
    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    fig = save_plot(time_i, global_final, results_pdcsap, i)

    fig.suptitle('PDCSAP_FLUX_' + str(id_run) + ' ## SNR:' +
                 str(format(results_pdcsap.snr, '.3f')) + ' ## SDE:' +
                 str(format(results_pdcsap.SDE, '.3f')) + ' ## FAP:' +
                 str(results_pdcsap.FAP))
    plt.savefig('Run_' + str(id_run) + '_PDCSAP-FLUX_' + 'TIC' + str(TIC_ID) +
                '.png',
                bbox_inches='tight',
                dpi=200)

    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    # Search of signals in the detrended data
    # ---------------------------------------------------------------------------------------------------------------------------------------------------------
    if det_met == 2:
        logprint('Kernel_size', '\t', 'Period', '\t', 'Per_err', '\t',
                 'N.Tran', '\t', 'Mean Depth(ppt)', '\t', 'T. dur(min)', '\t',
                 'T0', '\t', 'SNR', '\t', 'SDE', '\t', 'FAP\n')
    else:
        logprint('Window_size', '\t', 'Period', '\t', 'Per_err', '\t',
                 'N.Tran', '\t', 'Mean Depth(ppt)', '\t', 'T. dur(min)', '\t',
                 'T0', '\t', 'SNR', '\t', 'SDE', '\t', 'FAP\n')
    SNR = np.zeros((len(wl), 1))
    SDE = np.zeros((len(wl), 1))
    FAP = np.zeros((len(wl), 1))
    periods = np.zeros((len(wl), 1))
    per_err = np.zeros((len(wl), 1))
    durations = np.zeros((len(wl), 1))
    tos = np.zeros((len(wl), 1))

    for i in range(len(wl)):
        print(i)
        model = transitleastsquares(time_i, global_final[i])
        results = model.power(u=ab,
                              M_star=mass,
                              M_star_min=mass_min,
                              M_star_max=mass_max,
                              R_star=radius,
                              R_star_min=radius_min,
                              R_star_max=radius_max,
                              period_min=Pmin,
                              period_max=Pmax,
                              n_transits_min=n_tra,
                              show_progress_bar=False)
        SNR[i] = results.snr
        SDE[i] = results.SDE
        FAP[i] = results.FAP
        periods[i] = results.period
        per_err[i] = results.period_uncertainty
        durations[i] = results.duration
        tos[i] = results.T0
        x = []
        if results.T0 != 0:
            for j in range(0, len(results.transit_depths)):
                # print (results.transit_depths[i])
                x = np.append(x, results.transit_depths[j])
                x = x[~np.isnan(x)]
                depth = (1. - np.mean(x)) * 100 / 0.1  #we change to ppt units
        else:
            depth = results.transit_depths
        logprint(format(wl[i], '.4f'), '\t ', format(results.period,
                                                     '.5f'), '\t ',
                 format(results.period_uncertainty,
                        '.6f'), '\t ', results.distinct_transit_count, '\t',
                 format(depth, '.3f'), '\t',
                 format(results.duration * 24 * 60, '.1f'), '\t', results.T0,
                 '\t ', format(results.snr, '.3f'), '\t ',
                 format(results.SDE, '.3f'), '\t ', results.FAP)

        # -----------------------------------------------------------------------------------------------------------------------------------------------------
        # Saving a plot of the best signal from detrended data
        # -----------------------------------------------------------------------------------------------------------------------------------------------------
        fig = save_plot(time_i, global_final, results, i)

        if det_met == 2:
            fig.suptitle('Run ' + str(id_run) + ' ## kernel_size:' +
                         str(format(wl[i], '.4f')) + ' ## SNR:' +
                         str(format(results.snr, '.3f')) + ' ## SDE:' +
                         str(format(results.SDE, '.3f')) + ' ## FAP:' +
                         str(results.FAP))
            #plt.savefig('TIC'+str(TIC_ID)+'_ks='+str(format(wl[i],'.4f'))+'_run_'+str(id_run)+'.png', bbox_inches='tight', dpi=200)
            plt.savefig('Run_' + str(id_run) + '_ks=' +
                        str(format(wl[i], '.4f')) + '_TIC' + str(TIC_ID) +
                        '.png',
                        bbox_inches='tight',
                        dpi=200)
        else:
            fig.suptitle('Run ' + str(id_run) + ' ## window_size:' +
                         str(format(wl[i], '.4f')) + ' ## SNR:' +
                         str(format(results.snr, '.3f')) + ' ## SDE:' +
                         str(format(results.SDE, '.3f')) + ' ## FAP:' +
                         str(results.FAP))
            #plt.savefig('TIC'+str(TIC_ID)+'_ws='+str(format(wl[i],'.4f'))+'_run_'+str(id_run)+'.png', bbox_inches='tight', dpi=200)
            plt.savefig('Run_' + str(id_run) + '_ws=' +
                        str(format(wl[i], '.4f')) + '_TIC' + str(TIC_ID) +
                        '.png',
                        bbox_inches='tight',
                        dpi=200)
    SNR = np.nan_to_num(SNR)
    a = np.nanargmax(SNR)  #check the maximum SRN

    if results_pdcsap.snr > SNR[a]:
        logprint('\nBest Signal -->', '\t', 'PDCSAP_FLUX', '\t', 'SNR:',
                 format(results_pdcsap.snr, '.3f'))

        if (
                results_pdcsap.snr > SNR_min
        ):  # and results_pdcsap.SDE > SDE_min and results_pdcsap.FAP < FAP_max):
            logprint(
                '\nBest Signal is good enough to keep searching. Going to the next run.'
            )
            key = 1
        else:
            logprint('\nBest Signal does not look very promising. End')
            key = 0
    else:
        if det_met == 2:
            logprint('\nBest Signal -->', '\t', 'flatten_lc' + str(a), '\t',
                     'kernel_size:', format(wl[a], '0.4f'), '\t', 'SNR:',
                     format(SNR[a][0], '.3f'))
        else:
            logprint('\nBest Signal -->', '\t', 'flatten_lc' + str(a), '\t',
                     'window_size:', format(wl[a], '0.4f'), '\t', 'SNR:',
                     format(SNR[a][0], '.3f'))

        if (SNR[a] > SNR_min):  #and SDE[a] > SDE_min and FAP[a] < FAP_max):
            logprint(
                '\nBest Signal is good enough to keep searching. Going to the next run.'
            )
            key = 1
        else:
            logprint('\nBest Signal does not look very promising. End')
            key = 0

    print("### SNR :", str(format(results.snr, '.3f')), "   SDE :",
          str(format(results.SDE, '.3f')), "   FAP :", str(results.FAP))

    return results_pdcsap, SNR, key, periods, durations, tos
예제 #5
0
def main():
    print("Starting tests for wotan...")

    numpy.testing.assert_almost_equal(
        t14(R_s=1, M_s=1, P=365),
        0.6490025258902046)

    numpy.testing.assert_almost_equal(
        t14(R_s=1, M_s=1, P=365, small_planet=True),
        0.5403690143737738)
    print("Transit duration correct.")

    numpy.random.seed(seed=0)  # reproducibility

    print("Slide clipper...")
    points = 1000
    time = numpy.linspace(0, 30, points)
    flux = 1 + numpy.sin(time)  / points
    noise = numpy.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):  
        if i % 75 == 0:
            flux[i:i+5] -= 0.0004  # Add some transits
            flux[i+50:i+52] += 0.0002  # and flares

    clipped = slide_clip(
    time,
    flux,
    window_length=0.5,
    low=3,
    high=2,
    method='mad',
    center='median'
    )
    numpy.testing.assert_almost_equal(numpy.nansum(clipped), 948.9926368754939)

    """
    import matplotlib.pyplot as plt
    plt.scatter(time, flux, s=3, color='black')
    plt.scatter(time, clipped, s=3, color='orange')
    plt.show()
    """

    # TESS test
    print('Loading TESS data from archive.stsci.edu...')
    path = 'https://archive.stsci.edu/hlsps/tess-data-alerts/'
    #path = 'P:/P/Dok/tess_alarm/'
    filename = "hlsp_tess-data-alerts_tess_phot_00062483237-s01_tess_v1_lc.fits"
    time, flux = load_file(path + filename)

    window_length = 0.5
    
    print("Detrending 1 (biweight)...")
    flatten_lc, trend_lc = flatten(
        time,
        flux,
        window_length,
        edge_cutoff=1,
        break_tolerance=0.1,
        return_trend=True,
        cval=5.0)

    numpy.testing.assert_equal(len(trend_lc), 20076)
    numpy.testing.assert_almost_equal(numpy.nanmax(trend_lc), 28755.03811866676, decimal=2)
    numpy.testing.assert_almost_equal(numpy.nanmin(trend_lc), 28615.110229935075, decimal=2)
    numpy.testing.assert_almost_equal(trend_lc[500], 28671.650565730513, decimal=2)

    numpy.testing.assert_equal(len(flatten_lc), 20076)
    numpy.testing.assert_almost_equal(numpy.nanmax(flatten_lc), 1.0034653549250616, decimal=2)
    numpy.testing.assert_almost_equal(numpy.nanmin(flatten_lc), 0.996726610702177, decimal=2)
    numpy.testing.assert_almost_equal(flatten_lc[500], 1.000577429565131, decimal=2)

    print("Detrending 2 (andrewsinewave)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='andrewsinewave', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.15471987987, decimal=2)

    print("Detrending 3 (welsch)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='welsch', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.16764691235, decimal=2)

    print("Detrending 4 (hodges)...")
    flatten_lc, trend_lc = flatten(time[:1000], flux[:1000], window_length, method='hodges', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 994.0110525909206, decimal=2)

    print("Detrending 5 (median)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='median', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.122065014355, decimal=2)

    print("Detrending 6 (mean)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='mean', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.032473037714, decimal=2)

    print("Detrending 7 (trim_mean)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='trim_mean', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.095164910334, decimal=2)

    print("Detrending 8 (supersmoother)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='supersmoother', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18123.00632204841, decimal=2)

    print("Detrending 9 (hspline)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length, method='hspline', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18123.082601463717, decimal=1)

    print("Detrending 10 (cofiam)...")
    flatten_lc, trend_lc = flatten(time[:2000], flux[:2000], window_length, method='cofiam', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 1948.9999999987976, decimal=1)

    print("Detrending 11 (savgol)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length=301, method='savgol', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18123.003465539354, decimal=1)

    print("Detrending 12 (medfilt)...")
    flatten_lc, trend_lc = flatten(time, flux, window_length=301, method='medfilt', return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18123.22609806557, decimal=1)

    print("Detrending 12 (gp squared_exp)...")
    flatten_lc, trend_lc1 = flatten(
        time[:2000],
        flux[:2000],
        method='gp',
        kernel='squared_exp',
        kernel_size=10,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 1948.9672036416687, decimal=2)

    print("Detrending 13 (gp squared_exp robust)...")
    flatten_lc, trend_lc1 = flatten(
        time[:2000],
        flux[:2000],
        method='gp',
        kernel='squared_exp',
        kernel_size=10,
        robust=True,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 1948.8820772313468, decimal=2)

    print("Detrending 14 (gp matern)...")
    flatten_lc, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method='gp',
        kernel='matern',
        kernel_size=10,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 1948.9672464898367, decimal=2)

    print("Detrending 15 (gp periodic)...")
    flatten_lc, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method='gp',
        kernel='periodic',
        kernel_size=1,
        kernel_period=10,
        return_trend=True)

    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 1948.9999708985608, decimal=2)

    time_synth = numpy.linspace(0, 30, 200)
    flux_synth = numpy.sin(time_synth) + numpy.random.normal(0, 0.1, 200)
    flux_synth = 1 + flux_synth / 100
    time_synth *= 1.5
    print("Detrending 16 (gp periodic_auto)...")
    flatten_lc, trend_lc2 = flatten(
        time_synth,
        flux_synth,
        method='gp',
        kernel='periodic_auto',
        kernel_size=1,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 200, decimal=1)
    
    print("Detrending 17 (rspline)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='rspline',
        window_length=1,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18121.812790732245, decimal=2)

    print("Detrending 18 (huber)...")
    flatten_lc, trend_lc = flatten(
        time[:1000],
        flux[:1000],
        method='huber',
        window_length=0.5,
        edge_cutoff=0,
        break_tolerance=0.4,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 994.01102, decimal=2)
    
    print("Detrending 19 (winsorize)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='winsorize',
        window_length=0.5,
        edge_cutoff=0,
        break_tolerance=0.4,
        proportiontocut=0.1,
        return_trend=True)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.064587196448, decimal=2)
    
    
    print("Detrending 20 (pspline)...")
    flatten_lc, trend_lc = flatten(
        time,
        flux,
        method='pspline',
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18121.832133916843, decimal=2)
    
    print("Detrending 21 (hampelfilt)...")
    flatten_lc, trend_lc5 = flatten(
        time,
        flux,
        method='hampelfilt',
        window_length=0.5,
        cval=3,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.158072498867, decimal=2)
    
    print("Detrending 22 (lowess)...")
    flatten_lc, trend_lc1 = flatten(
        time,
        flux,
        method='lowess',
        window_length=1,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18123.039744125545, decimal=2)

    print("Detrending 23 (huber_psi)...")
    flatten_lc, trend_lc1 = flatten(
        time,
        flux,
        method='huber_psi',
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.122065014355, decimal=2)

    print("Detrending 24 (tau)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='tau',
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18119.02772621119, decimal=2)
    
    print("Detrending 25 (cosine)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='cosine',
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18122.999999974905, decimal=2)

    print("Detrending 25 (cosine robust)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='cosine',
        robust=True,
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 18122.227938535038, decimal=2)


    import numpy as np
    points = 1000
    time = numpy.linspace(0, 30, points)
    flux = 1 + numpy.sin(time)  / points
    noise = numpy.random.normal(0, 0.0001, points)
    flux += noise

    for i in range(points):  
        if i % 75 == 0:
            flux[i:i+5] -= 0.0004  # Add some transits
            flux[i+50:i+52] += 0.0002  # and flares


    print("Detrending 26 (hampel 17A)...")
    flatten_lc, trend_lc1 = flatten(
        time,
        flux,
        method='hampel',
        cval=(1.7, 3.4, 8.5),
        window_length=0.5,
        return_trend=True
        )

    print("Detrending 27 (hampel 25A)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        method='hampel',
        cval=(2.5, 4.5, 9.5),
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 997.9994362858843, decimal=2)

    print("Detrending 28 (ramsay)...")
    flatten_lc, trend_lc3 = flatten(
        time,
        flux,
        method='ramsay',
        cval=0.3,
        window_length=0.5,
        return_trend=True
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 997.9974021484584, decimal=2)

    print("Detrending 29 (ridge)...")
    flatten_lc, trend_lc1 = flatten(
        time,
        flux,
        window_length=0.5,
        method='ridge',
        return_trend=True,
        cval=1)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 999.9999958887022, decimal=1)

    print("Detrending 30 (lasso)...")
    flatten_lc, trend_lc2 = flatten(
        time,
        flux,
        window_length=0.5,
        method='lasso',
        return_trend=True,
        cval=1)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 999.9999894829843, decimal=1)

    print("Detrending 31 (elasticnet)...")
    flatten_lc, trend_lc3 = flatten(
        time,
        flux,
        window_length=0.5,
        method='elasticnet',
        return_trend=True,
        cval=1)
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc), 999.9999945063338, decimal=1)


    # Test of transit mask
    print('Testing transit_mask')
    filename = 'hlsp_tess-data-alerts_tess_phot_00207081058-s01_tess_v1_lc.fits'
    time, flux = load_file(path + filename)

    from wotan import transit_mask
    mask = transit_mask(
        time=time,
        period=14.77338,
        duration=0.21060,
        T0=1336.141095
        )
    numpy.testing.assert_almost_equal(numpy.sum(mask), 302, decimal=1)

    print('Detrending 32 (transit_mask cosine)')
    flatten_lc1, trend_lc1 = flatten(
        time,
        flux,
        method='cosine',
        window_length=0.4,
        return_trend=True,
        robust=True,
        mask=mask
        )
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc1), 18119.281265446625, decimal=1)

    print('Detrending 33 (transit_mask lowess)')
    flatten_lc2, trend_lc2 = flatten(
        time,
        flux,
        method='lowess',
        window_length=0.8,
        return_trend=True,
        robust=True,
        mask=mask
        )
    #print(numpy.nansum(flatten_lc2))
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc2), 18119.30865711536, decimal=1)

    print('Detrending 34 (transit_mask GP)')
    mask = transit_mask(
        time=time[:2000],
        period=100,
        duration=0.3,
        T0=1327.4
        )
    flatten_lc2, trend_lc2 = flatten(
        time[:2000],
        flux[:2000],
        method='gp',
        kernel='matern',
        kernel_size=0.8,
        return_trend=True,
        robust=True,
        mask=mask
        )
    #print(numpy.nansum(flatten_lc2))
    numpy.testing.assert_almost_equal(numpy.nansum(flatten_lc2), 1948.9000170463796, decimal=1)
    
    """
    import matplotlib.pyplot as plt
    plt.scatter(time[:2000], flux[:2000], s=1, color='black')
    plt.plot(time[:2000], trend_lc2, color='red', linewidth=2, linestyle='dashed')
    plt.show()
    plt.close()
    """

    print('All tests completed.')