def fade_image(context, block_size, frame_base: Frame, list_correction: list): logger = logging.getLogger(__name__) # load context scale_factor = int(context.scale_factor) fade_list = [] out_image = Frame() out_image.create_new(frame_base.width, frame_base.height) out_image.copy_image(frame_base) fade_data_size = 3 for x in range(int(len(list_correction) / fade_data_size)): fade_list.append(FadeData(int(list_correction[x * fade_data_size + 0]), int(list_correction[x * fade_data_size + 1]), int(list_correction[x * fade_data_size + 2]))) # copy over predictive vectors into new image for vector in fade_list: out_image.fade_block(vector.x * scale_factor, vector.y * scale_factor, block_size * scale_factor, vector.scalar) #out_image.frame = np.clip(out_image.frame, 0, 255) return out_image
from wrappers.frame import Frame # f1 = Frame() # f1.load_from_string("C:\\Users\\windwoz\\Desktop\\workspace\\violetfade\\100\\frame20.png") # # f2 = Frame() # f2.load_from_string("C:\\Users\\windwoz\\Desktop\\workspace\\violetfade\\100\\frame21.png") # f1 = Frame() f1.load_from_string( "C:\\Users\\windwoz\\Desktop\\workspace\\violetfade\\inputs\\frame30.jpg") f1.fade_block(0, 0, 100, -100) f1.save_image("C:\\Users\\windwoz\\Desktop\\workspace\\violetfade\\lmfao.jpg")