def ingest_visibility(self,
                          freq=None,
                          chan_width=None,
                          times=None,
                          add_errors=False,
                          block=True,
                          bandpass=False):
        if freq is None:
            freq = [1e8]
        if chan_width is None:
            chan_width = [1e6]
        if times is None:
            times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5)

        lowcore = create_named_configuration('LOWBD2', rmax=750.0)
        frequency = numpy.array(freq)
        channel_bandwidth = numpy.array(chan_width)

        phasecentre = SkyCoord(ra=+180.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')
        if block:
            vt = create_blockvisibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        else:
            vt = create_visibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        cellsize = 0.001
        model = create_image_from_visibility(
            vt,
            npixel=self.npixel,
            cellsize=cellsize,
            npol=1,
            frequency=frequency,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"))
        nchan = len(self.frequency)
        flux = numpy.array(nchan * [[100.0]])
        facets = 4

        rpix = model.wcs.wcs.crpix - 1.0
        spacing_pixels = self.npixel // facets
        centers = [-1.5, -0.5, 0.5, 1.5]
        comps = list()
        for iy in centers:
            for ix in centers:
                p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                    int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
                comp = create_skycomponent(
                    direction=sc,
                    flux=flux,
                    frequency=frequency,
                    polarisation_frame=PolarisationFrame("stokesI"))
                comps.append(comp)
        if block:
            predict_skycomponent_visibility(vt, comps)
        else:
            predict_skycomponent_visibility(vt, comps)
        insert_skycomponent(model, comps)
        self.comps = comps
        self.model = copy_image(model)
        self.empty_model = create_empty_image_like(model)
        export_image_to_fits(
            model, '%s/test_pipeline_functions_model.fits' % (self.dir))

        if add_errors:
            # These will be the same for all calls
            numpy.random.seed(180555)
            gt = create_gaintable_from_blockvisibility(vt)
            gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0)
            vt = apply_gaintable(vt, gt)

            if bandpass:
                bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5)
                bgt = simulate_gaintable(bgt,
                                         phase_error=0.01,
                                         amplitude_error=0.01,
                                         smooth_channels=4)
                vt = apply_gaintable(vt, bgt)

        return vt
    def actualSetup(self, nsources=None, nvoronoi=None):

        n_workers = 8

        # Set up the observation: 10 minutes at transit, with 10s integration.
        # Skip 5/6 points to avoid outstation redundancy

        nfreqwin = 1
        ntimes = 3
        self.rmax = 2500.0
        dec = -40.0 * u.deg
        frequency = [1e8]
        channel_bandwidth = [0.1e8]
        times = numpy.linspace(-10.0, 10.0,
                               ntimes) * numpy.pi / (3600.0 * 12.0)

        phasecentre = SkyCoord(ra=+0.0 * u.deg,
                               dec=dec,
                               frame='icrs',
                               equinox='J2000')
        low = create_named_configuration('LOWBD2', rmax=self.rmax)

        centre = numpy.mean(low.xyz, axis=0)
        distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                               low.xyz[:, 1] - centre[1],
                               low.xyz[:, 2] - centre[2])
        lowouter = low.data[distance > 1000.0][::6]
        lowcore = low.data[distance < 1000.0][::3]
        low.data = numpy.hstack((lowcore, lowouter))

        blockvis = create_blockvisibility(
            low,
            times,
            frequency=frequency,
            channel_bandwidth=channel_bandwidth,
            weight=1.0,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"),
            zerow=True)

        vis = convert_blockvisibility_to_visibility(blockvis)
        advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

        cellsize = advice['cellsize']
        npixel = advice['npixels2']

        small_model = create_image_from_visibility(blockvis,
                                                   npixel=512,
                                                   frequency=frequency,
                                                   nchan=nfreqwin,
                                                   cellsize=cellsize,
                                                   phasecentre=phasecentre)

        vis.data['imaging_weight'][...] = vis.data['weight'][...]
        vis = weight_list_serial_workflow([vis], [small_model])[0]
        vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

        blockvis = convert_visibility_to_blockvisibility(vis)

        # ### Generate the model from the GLEAM catalog, including application of the primary beam.

        beam = create_image_from_visibility(blockvis,
                                            npixel=npixel,
                                            frequency=frequency,
                                            nchan=nfreqwin,
                                            cellsize=cellsize,
                                            phasecentre=phasecentre)
        beam = create_low_test_beam(beam, use_local=False)

        flux_limit = 0.5
        original_gleam_components = create_low_test_skycomponents_from_gleam(
            flux_limit=flux_limit,
            phasecentre=phasecentre,
            frequency=frequency,
            polarisation_frame=PolarisationFrame('stokesI'),
            radius=0.15)

        all_components = apply_beam_to_skycomponent(original_gleam_components,
                                                    beam)
        all_components = filter_skycomponents_by_flux(all_components,
                                                      flux_min=flux_limit)
        voronoi_components = filter_skycomponents_by_flux(all_components,
                                                          flux_min=1.5)

        def max_flux(elem):
            return numpy.max(elem.flux)

        voronoi_components = sorted(voronoi_components,
                                    key=max_flux,
                                    reverse=True)

        if nsources is not None:
            all_components = [all_components[0]]

        if nvoronoi is not None:
            voronoi_components = [voronoi_components[0]]

        self.screen = import_image_from_fits(
            arl_path('data/models/test_mpc_screen.fits'))
        all_gaintables = create_gaintable_from_screen(blockvis, all_components,
                                                      self.screen)

        gleam_skymodel_noniso = [
            SkyModel(components=[all_components[i]],
                     gaintable=all_gaintables[i])
            for i, sm in enumerate(all_components)
        ]

        # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel,
        # returning a list of visibilities, one for each skymodel. We then sum these to obtain
        # the total predicted visibility. All images and skycomponents in the same skymodel
        # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable.

        self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(
            blockvis)

        ngroup = n_workers
        future_vis = arlexecute.scatter(self.all_skymodel_noniso_vis)
        chunks = [
            gleam_skymodel_noniso[i:i + ngroup]
            for i in range(0, len(gleam_skymodel_noniso), ngroup)
        ]
        for chunk in chunks:
            result = predict_skymodel_list_arlexecute_workflow(future_vis,
                                                               chunk,
                                                               context='2d',
                                                               docal=True)
            work_vis = arlexecute.compute(result, sync=True)
            for w in work_vis:
                self.all_skymodel_noniso_vis.data['vis'] += w.data['vis']
            assert numpy.max(
                numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0

        self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(
            self.all_skymodel_noniso_vis)

        # ### Remove weaker of components that are too close (0.02 rad)
        idx, voronoi_components = remove_neighbouring_components(
            voronoi_components, 0.02)

        model = create_image_from_visibility(blockvis,
                                             npixel=npixel,
                                             frequency=frequency,
                                             nchan=nfreqwin,
                                             cellsize=cellsize,
                                             phasecentre=phasecentre)

        # Use the gaintable for the brightest component as the starting gaintable
        all_gaintables[0].gain[...] = numpy.conjugate(
            all_gaintables[0].gain[...])
        all_gaintables[0].gain[...] = 1.0 + 0.0j
        self.theta_list = initialize_skymodel_voronoi(model,
                                                      voronoi_components,
                                                      all_gaintables[0])
예제 #3
0
                           equinox='J2000')
    low = create_named_configuration('LOWBD2', rmax=rmax)
    print('Configuration has %d stations' % len(low.data))
    centre = numpy.mean(low.xyz, axis=0)
    distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                           low.xyz[:, 1] - centre[1],
                           low.xyz[:, 2] - centre[2])
    lowouter = low.data[distance > 1000.0][::6]
    lowcore = low.data[distance < 1000.0][::3]
    low.data = numpy.hstack((lowcore, lowouter))

    block_vis = create_blockvisibility(
        low,
        times,
        frequency=frequency,
        channel_bandwidth=channel_bandwidth,
        weight=1.0,
        phasecentre=phasecentre,
        polarisation_frame=PolarisationFrame("stokesI"),
        zerow=True)

    vis = convert_blockvisibility_to_visibility(block_vis)
    advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

    cellsize = advice['cellsize']
    vis_slices = advice['vis_slices']
    npixel = advice['npixels2']

    small_model = create_image_from_visibility(block_vis,
                                               npixel=512,
                                               frequency=frequency,