pkl.HIGHEST_PROTOCOL) own_state = net.state_dict() for name, param in pret_net.items(): if name not in own_state: continue if isinstance(param, Parameter): param = param.data try: own_state[name].copy_(param) print('Copied {}'.format(name)) except: print('Did not find {}'.format(name)) continue # Move model to GPU and set train mode net.load_state_dict(own_state) net.cuda() net.train() # TODO: Create optimizer for network parameters from conv2 onwards # (do not optimize conv1) if not os.path.exists(output_dir): os.makedirs(output_dir) # training train_loss = 0 tp, tf, fg, bg = 0., 0., 0, 0 step_cnt = 0 re_cnt = False t = Timer()
for name, param in pret_net.items(): if name not in own_state: continue if isinstance(param, Parameter): param = param.data try: own_state[name].copy_(param) print('Copied {}'.format(name)) except: print('Did not find {}'.format(name)) continue resume_file = "./wsddn_test_checkpoint_adam" if resume and os.path.isfile(resume_file): print("=> loading checkpoint '{}'".format(resume_file)) checkpoint = torch.load(resume_file) epoch = checkpoint['epoch'] net.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(resume_file, checkpoint['epoch'])) # Move model to GPU and set train mode net.cuda() net.eval() save_name = '{}_{}' aps = test_net(save_name, net, test_imdb, max_per_image, thresh=thresh, visualize=visualize,logger = logger, step = epoch) print("here's the aps") print(aps)