예제 #1
0
             pkl.HIGHEST_PROTOCOL)
own_state = net.state_dict()
for name, param in pret_net.items():
    if name not in own_state:
        continue
    if isinstance(param, Parameter):
        param = param.data
    try:
        own_state[name].copy_(param)
        print('Copied {}'.format(name))
    except:
        print('Did not find {}'.format(name))
        continue

# Move model to GPU and set train mode
net.load_state_dict(own_state)
net.cuda()
net.train()

# TODO: Create optimizer for network parameters from conv2 onwards
# (do not optimize conv1)

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# training
train_loss = 0
tp, tf, fg, bg = 0., 0., 0, 0
step_cnt = 0
re_cnt = False
t = Timer()
예제 #2
0
for name, param in pret_net.items():
    if name not in own_state:
        continue
    if isinstance(param, Parameter):
        param = param.data
    try:
        own_state[name].copy_(param)
        print('Copied {}'.format(name))
    except:
        print('Did not find {}'.format(name))
        continue
resume_file = "./wsddn_test_checkpoint_adam"
if resume and os.path.isfile(resume_file):
    print("=> loading checkpoint '{}'".format(resume_file))
    checkpoint = torch.load(resume_file)
    epoch = checkpoint['epoch']
    net.load_state_dict(checkpoint['state_dict'])
    print("=> loaded checkpoint '{}' (epoch {})"
          .format(resume_file, checkpoint['epoch']))
# Move model to GPU and set train mode
net.cuda()
net.eval()
save_name = '{}_{}'

aps = test_net(save_name, net, test_imdb, 
                   max_per_image, thresh=thresh, visualize=visualize,logger = logger, step = epoch)
print("here's the aps")
print(aps)