예제 #1
0
 def test_create_close_q_rsa_key(self):
     with tempfile.TemporaryDirectory() as tempdir, WorkDir(tempdir):
         PrimeDB().add(0xd7627ea571293d6bd1dc8d4664bc6ab1).write()
         self._run_x509sak(["genbrokenrsa", "--bitlen", "256", "--close-q"])
         key = RSAPrivateKey.read_pemfile("broken_rsa.key")[0]
         self.assertEqual(key.n.bit_length(), 256)
         self.assertEqual(key.p, 0xd7627ea571293d6bd1dc8d4664bc6ab1)
         self.assertEqual(key.q, key.p + 94)
         key.check_integrity()
예제 #2
0
 def test_automatic_e(self):
     with tempfile.TemporaryDirectory() as tempdir, WorkDir(tempdir):
         PrimeDB().add(0xd06bda6bd4031ec96cb8023fd89fc9bb,
                       0xd578117dc5a445697a7c6e04e09c801f).write()
         self._run_x509sak(["genbrokenrsa", "--bitlen", "256", "-e", "-1"])
         key = RSAPrivateKey.read_pemfile("broken_rsa.key")[0]
         self.assertEqual(key.n.bit_length(), 256)
         self.assertEqual(key.p, 0xd06bda6bd4031ec96cb8023fd89fc9bb)
         self.assertEqual(key.q, 0xd578117dc5a445697a7c6e04e09c801f)
         self.assertNotEqual(key.e, 0x10001)
         key.check_integrity()
예제 #3
0
 def test_create_rsa_key(self):
     with tempfile.TemporaryDirectory() as tempdir, WorkDir(tempdir):
         PrimeDB().add(0xd06bda6bd4031ec96cb8023fd89fc9bb,
                       0xd578117dc5a445697a7c6e04e09c801f).write()
         self._run_x509sak(["genbrokenrsa", "--bitlen", "256"])
         key = RSAPrivateKey.read_pemfile("broken_rsa.key")[0]
         self.assertEqual(key.n.bit_length(), 256)
         self.assertEqual(key.p, 0xd06bda6bd4031ec96cb8023fd89fc9bb)
         self.assertEqual(key.q, 0xd578117dc5a445697a7c6e04e09c801f)
         self.assertEqual(key.e, 0x10001)
         self.assertEqual(
             key.d,
             0x5a360028c4c14b78b770d19ce099e80b0a9b25ab6ae35098ce9e7cc27d08ca19
         )
         key.check_integrity()
예제 #4
0
 def test_carmichael_totient(self):
     with tempfile.TemporaryDirectory() as tempdir, WorkDir(tempdir):
         PrimeDB().add(0xd06bda6bd4031ec96cb8023fd89fc9bb,
                       0xd578117dc5a445697a7c6e04e09c801f).write()
         self._run_x509sak(
             ["genbrokenrsa", "--bitlen", "256", "--carmichael-totient"])
         key = RSAPrivateKey.read_pemfile("broken_rsa.key")[0]
         self.assertEqual(key.n.bit_length(), 256)
         self.assertEqual(key.p, 0xd06bda6bd4031ec96cb8023fd89fc9bb)
         self.assertEqual(key.q, 0xd578117dc5a445697a7c6e04e09c801f)
         self.assertEqual(key.e, 0x10001)
         self.assertEqual(
             key.d,
             0x3504164f03e88396ab0cbc8200b8d91a19a60e66e09d11d9e69f27802917833
         )
         key.check_integrity()
예제 #5
0
 def test_gcd_n_phi_n(self):
     with tempfile.TemporaryDirectory() as tempdir, WorkDir(tempdir):
         PrimeDB().add(0x1fd22b50d1e28365855635,
                       0x3af25062dcf148b85084f5).write()
         output = self._run_x509sak(
             ["genbrokenrsa", "--bitlen", "257", "--gcd-n-phi-n",
              "-v"]).stdout
         key = RSAPrivateKey.read_pemfile("broken_rsa.key")[0]
         self.assertEqual(key.n.bit_length(), 257)
         self.assertEqual(key.p, 0x1fd22b50d1e28365855635)
         self.assertEqual(key.q,
                          0xea778f672d05715314fd556a2667dca7743e33da973)
         self.assertEqual((key.q - 1) % (2 * key.p), 0)
         self.assertNotEqual(NumberTheory.gcd(key.n, key.phi_n), 1)
         self.assertEqual(key.e, 0x10001)
         self.assertIn(b"gcd(n, phi(n)) = p", output)
         key.check_integrity()
예제 #6
0
 def __init__(self, cmdname, args):
     BaseAction.__init__(self, cmdname, args)
     if self._args.public_key:
         key = PublicKey.read_pemfile(self._args.key_filename)[0]
         if key.pk_alg.value.cryptosystem == Cryptosystems.RSA:
             print("# %d bit RSA public key (ID %s)" %
                   (key.n.bit_length(), key.keyid().hex()))
             print("n = 0x%x" % (key.n))
             print("e = 0x%x" % (key.e))
         elif key.pk_alg.value.cryptosystem == Cryptosystems.ECC_ECDSA:
             print("# ECC public key on %s (key ID %s)" %
                   (key.curve.name, key.keyid().hex()))
             print("curve_name = \"%s\"" % (key.curve.name))
             print("(x, y) = (0x%x, 0x%x)" % (key.x, key.y))
         elif key.pk_alg.value.cryptosystem == Cryptosystems.ECC_EdDSA:
             print(
                 "# ECC public key on Twisted Edwards curve %s %s prehashing (key ID %s)"
                 % (key.curve.name, "with" if key.prehash else "without",
                    key.keyid().hex()))
             print("curve_name = \"%s\"" % (key.curve.name))
             print("prehash = %s" % (key.prehash))
             print("(x, y) = (0x%x, 0x%x)" % (key.x, key.y))
         else:
             raise NotImplementedError(key.pk_alg.value.cryptosystem)
     else:
         if self._args.key_type == "rsa":
             key = RSAPrivateKey.read_pemfile(self._args.key_filename)[0]
             print("# %d bit RSA private key (ID %s)" %
                   (key.n.bit_length(), key.pubkey.keyid().hex()))
             print("p = 0x%x" % (key.p))
             print("q = 0x%x" % (key.q))
             print("n = p * q")
             print("e = 0x%x" % (key.e))
             print("d = 0x%x" % (key.d))
         elif self._args.key_type == "ecc":
             key = ECPrivateKey.read_pemfile(self._args.key_filename)[0]
             print("# ECC private key on %s (key ID %s)" %
                   (key.curve.name, key.pubkey.keyid().hex()))
             print("curve_name = \"%s\"" % (key.curve.name))
             print("d = 0x%x" % (key.d))
             print("(x, y) = (0x%x, 0x%x)" % (key.x, key.y))
         elif self._args.key_type == "eddsa":
             key = EDPrivateKey.read_pemfile(self._args.key_filename)[0]
             pubkey = key.pubkey
             print(
                 "# ECC private key on Twisted Edwards curve %s %s prehashing (key ID %s)"
                 % (key.curve.name, "with" if key.prehash else "without",
                    pubkey.keyid().hex()))
             print("curve_name = \"%s\"" % (key.curve.name))
             print("prehash = %s" % (key.prehash))
             print("priv = bytes.fromhex(\"%s\")" % (key.priv.hex()))
             print("hashfnc = hashlib.new(\"%s\")" %
                   (key.curve.expand_hashfnc))
             print(
                 "(expand_bitwise_and, expand_bitwise_or) = (0x%x, 0x%x)" %
                 (key.curve.expand_bitwise_and,
                  key.curve.expand_bitwise_or))
             print("a = 0x%x" % (key.scalar))
             print("(x, y) = (0x%x, 0x%x)" % (pubkey.x, pubkey.y))
         else:
             raise NotImplementedError(self._args.key_type)
예제 #7
0
	def _load_privkey(self, keyname):
		privkey_text = self._load_text("privkey/" + keyname + ".pem")
		return RSAPrivateKey.from_pem_data(privkey_text)[0]
예제 #8
0
    def __init__(self, cmdname, args):
        BaseAction.__init__(self, cmdname, args)

        if (not self._args.force) and os.path.exists(self._args.outfile):
            raise UnfulfilledPrerequisitesException(
                "File/directory %s already exists. Remove it first or use --force."
                % (self._args.outfile))

        if not self._args.gcd_n_phi_n:
            self._primetype = "2msb"
            self._p_bitlen = self._args.bitlen // 2
            self._q_bitlen = self._args.bitlen - self._p_bitlen
        else:
            self._primetype = "3msb"
            self._p_bitlen = self._args.bitlen // 3
            self._q_bitlen = self._args.bitlen - (2 * self._p_bitlen) - 1

        if (self._args.close_q) and (self._p_bitlen != self._q_bitlen):
            raise UnfulfilledPrerequisitesException(
                "Generating a close-q keypair with a %d modulus does't work, because p would have to be %d bit and q %d bit. Choose an even modulus bitlength."
                % (self._args.bitlen, self._p_bitlen, self._q_bitlen))

        if self._args.q_stepping < 1:
            raise InvalidInputException(
                "q-stepping value must be greater or equal to 1, was %d." %
                (self._args.q_stepping))

        self._log.debug("Selecting %s primes with p = %d bit and q = %d bit.",
                        self._primetype, self._p_bitlen, self._q_bitlen)

        self._prime_db = PrimeDB(self._args.prime_db,
                                 generator_program=self._args.generator)
        p = None
        q = None
        while True:
            if p is None:
                p = self._prime_db.get(bitlen=self._p_bitlen,
                                       primetype=self._primetype)
                q_generator = self._select_q(p)
            if q is None:
                q = next(q_generator)
            if self._args.gcd_n_phi_n:
                # q = (2 * r * p) + 1
                r = q
                q = 2 * r * p + 1
                if not NumberTheory.is_probable_prime(q):
                    q = None
                    continue

            # Always make p the smaller factor
            if p > q:
                (p, q) = (q, p)

            n = p * q
            if self._args.public_exponent == -1:
                e = random.randint(2, n - 1)
            else:
                e = self._args.public_exponent

            if self._args.carmichael_totient:
                totient = NumberTheory.lcm(p - 1, q - 1)
            else:
                totient = (p - 1) * (q - 1)
            gcd = NumberTheory.gcd(totient, e)
            if self._args.accept_unusable_key or (gcd == 1):
                break
            else:
                # Pair (phi(n), e) wasn't acceptable.
                self._log.debug("gcd(totient, e) was %d, retrying.", gcd)
                if self._args.public_exponent != -1:
                    # Public exponent e is fixed, need to choose another q.
                    if p.bit_length() == q.bit_length():
                        # Can re-use q as next p
                        (p, q) = (q, None)
                        q_generator = self._select_q(p)
                    else:
                        # When they differ in length, need to re-choose both values
                        (p, q) = (None, None)

        rsa_keypair = RSAPrivateKey.create(
            p=p,
            q=q,
            e=e,
            swap_e_d=self._args.switch_e_d,
            valid_only=not self._args.accept_unusable_key,
            carmichael_totient=self._args.carmichael_totient)
        rsa_keypair.write_pemfile(self._args.outfile)
        if self._args.verbose >= 1:
            diff = q - p
            print("Generated %d bit RSA key:" % (rsa_keypair.n.bit_length()))
            print("p = 0x%x" % (rsa_keypair.p))
            if not self._args.gcd_n_phi_n:
                print("q = 0x%x" % (rsa_keypair.q))
            else:
                print("q = 2 * r * p + 1 = 0x%x" % (rsa_keypair.q))
                print("r = 0x%x" % (r))

            print("phi(n) = 0x%x" % (rsa_keypair.phi_n))
            print("lambda(n) = 0x%x" % (rsa_keypair.lambda_n))
            print("phi(n) / lambda(n) = gcd(p - 1, q - 1) = %d" %
                  (rsa_keypair.phi_n // rsa_keypair.lambda_n))
            gcd_n_phin = NumberTheory.gcd(rsa_keypair.n, rsa_keypair.phi_n)
            if gcd_n_phin == rsa_keypair.p:
                print("gcd(n, phi(n)) = p")
            else:
                print("gcd(n, phi(n)) = 0x%x" % (gcd_n_phin))
            if self._args.close_q:
                print("q - p = %d (%d bit)" % (diff, diff.bit_length()))
            print("n = 0x%x" % (rsa_keypair.n))
            print("d = 0x%x" % (rsa_keypair.d))
            print("e = 0x%x" % (rsa_keypair.e))