예제 #1
0
def _compute_target_grid_mapping(cube_config: CubeConfig,
                                 source_gm: GridMapping) -> GridMapping:
    # assert_true(source_gm.is_regular, 'source_gm must be regular')

    target_crs = cube_config.crs
    target_bbox = cube_config.bbox
    target_spatial_res = cube_config.spatial_res

    if target_crs is None \
            and target_bbox is None \
            and target_spatial_res is None:
        # Nothing to do
        if source_gm.is_regular:
            return source_gm
        return source_gm.to_regular(tile_size=cube_config.tile_size)

    if target_spatial_res is not None:
        xy_res = (target_spatial_res, target_spatial_res)
    else:
        xy_res = source_gm.xy_res
    if target_bbox is not None:
        x_res, y_res = xy_res
        x_min, y_min, x_max, y_max = target_bbox
        xy_min = x_min, y_min
        size = round((x_max - x_min) / x_res), round((y_max - y_min) / y_res)
    else:
        xy_min = source_gm.x_min, source_gm.y_min
        size = source_gm.size
    if target_crs is not None:
        crs = pyproj.crs.CRS.from_string(target_crs)
    else:
        crs = source_gm.crs
    target_gm = GridMapping.regular(size=size,
                                    xy_min=xy_min,
                                    xy_res=xy_res,
                                    crs=crs,
                                    tile_size=source_gm.tile_size,
                                    is_j_axis_up=source_gm.is_j_axis_up)
    return target_gm.derive(xy_var_names=source_gm.xy_var_names,
                            xy_dim_names=source_gm.xy_dim_names)
예제 #2
0
파일: spatial.py 프로젝트: dcs4cop/xcube
def resample_in_space(dataset: xr.Dataset,
                      source_gm: GridMapping = None,
                      target_gm: GridMapping = None,
                      var_configs: Mapping[Hashable, Mapping[str,
                                                             Any]] = None):
    """
    Resample a dataset in the spatial dimensions.

    If the source grid mapping *source_gm* is not given,
    it is derived from *dataset*:
    ``source_gm = GridMapping.from_dataset(dataset)``.

    If the target grid mapping *target_gm* is not given,
    it is derived from *source_gm*:
    ``target_gm = source_gm.to_regular()``.

    If *source_gm* is almost equal to *target_gm*, this
    function is a no-op and *dataset* is returned unchanged.

    Otherwise the function computes a spatially
    resampled version of *dataset* and returns it.

    Using *var_configs*, the resampling of individual
    variables can be configured. If given, *var_configs*
    must be a mapping from variable names to configuration
    dictionaries which can have the following properties:

    * ``spline_order`` (int) - The order of spline polynomials
        used for interpolating. It is used for upsampling only.
        Possible values are 0 to 5.
        Default is 1 (bi-linear) for floating point variables,
        and 0 (= nearest neighbor) for integer and bool variables.
    * ``aggregator`` (str) - An optional aggregating
        function. It is used for downsampling only.
        Examples are numpy.nanmean, numpy.nanmin, numpy.nanmax.
        Default is numpy.nanmean for floating point variables,
        and None (= nearest neighbor) for integer and bool variables.
    * ``recover_nan`` (bool) - whether a special algorithm
        shall be used that is able to recover values that would
        otherwise yield NaN during resampling.
        Default is True for floating point variables,
        and False for integer and bool variables.

    Note that *var_configs* is only used if the resampling involves
    an affine transformation. This is true if the CRS of
    *source_gm* and CRS of *target_gm* are equal and one of two
    cases is given:

    1. *source_gm* is regular.
       In this case the resampling is the affine transformation.
       and the result is returned directly.
    2. *source_gm* is not regular and has a lower resolution
       than *target_cm*.
       In this case *dataset* is downsampled first using an affine
       transformation. Then the result is rectified.

    In all other cases, no affine transformation is applied and
    the resampling is a direct rectification.

    :param dataset: The source dataset.
    :param source_gm: The source grid mapping.
    :param target_gm: The target grid mapping. Must be regular.
    :param var_configs: Optional resampling configurations
        for individual variables.
    :return: The spatially resampled dataset.
    """
    if source_gm is None:
        # No source grid mapping given, so do derive it from dataset
        source_gm = GridMapping.from_dataset(dataset)

    if target_gm is None:
        # No target grid mapping given, so do derive it from source
        target_gm = source_gm.to_regular()

    if source_gm.is_close(target_gm):
        # If source and target grid mappings are almost equal
        return dataset

    # target_gm must be regular
    GridMapping.assert_regular(target_gm, name='target_gm')

    # Are source and target both geographic grid mappings?
    both_geographic = source_gm.crs.is_geographic \
                      and target_gm.crs.is_geographic

    if both_geographic or source_gm.crs == target_gm.crs:
        # If CRSes are both geographic or their CRSes are equal:
        if source_gm.is_regular:
            # If also the source is regular, then resampling reduces
            # to an affine transformation.
            return affine_transform_dataset(
                dataset,
                source_gm=source_gm,
                target_gm=target_gm,
                var_configs=var_configs,
            )

        # If the source is not regular, we need to rectify it,
        # so the target is regular. Our rectification implementation
        # works only correctly if source pixel size >= target pixel
        # size. Therefore check if we must downscale source first.
        x_scale = source_gm.x_res / target_gm.x_res
        y_scale = source_gm.y_res / target_gm.y_res
        if x_scale > _SCALE_LIMIT and y_scale > _SCALE_LIMIT:
            # Source pixel size >= target pixel size.
            # We can rectify.
            return rectify_dataset(dataset,
                                   source_gm=source_gm,
                                   target_gm=target_gm)

        # Source has higher resolution than target.
        # Downscale first, then rectify
        if source_gm.is_regular:
            # If source is regular
            downscaled_gm = source_gm.scale((x_scale, y_scale))
            downscaled_dataset = resample_dataset(
                dataset,
                ((x_scale, 1, 0), (1, y_scale, 0)),
                size=downscaled_gm.size,
                tile_size=source_gm.tile_size,
                xy_dim_names=source_gm.xy_dim_names,
                var_configs=var_configs,
            )
        else:
            _, downscaled_size = scale_xy_res_and_size(source_gm.xy_res,
                                                       source_gm.size,
                                                       (x_scale, y_scale))
            downscaled_dataset = resample_dataset(
                dataset,
                ((x_scale, 1, 0), (1, y_scale, 0)),
                size=downscaled_size,
                tile_size=source_gm.tile_size,
                xy_dim_names=source_gm.xy_dim_names,
                var_configs=var_configs,
            )
            downscaled_gm = GridMapping.from_dataset(
                downscaled_dataset,
                tile_size=source_gm.tile_size,
                prefer_crs=source_gm.crs)
        return rectify_dataset(downscaled_dataset,
                               source_gm=downscaled_gm,
                               target_gm=target_gm)

    # If CRSes are not both geographic and their CRSes are different
    # transform the source_gm so its CRS matches the target CRS:
    transformed_source_gm = source_gm.transform(target_gm.crs)
    transformed_x, transformed_y = transformed_source_gm.xy_coords
    reprojected_dataset = resample_in_space(dataset.assign(
        transformed_x=transformed_x, transformed_y=transformed_y),
                                            source_gm=transformed_source_gm,
                                            target_gm=target_gm)
    if not target_gm.crs.is_geographic:
        # Add 'crs' variable according to CF conventions
        reprojected_dataset = reprojected_dataset.assign(
            crs=xr.DataArray(0, attrs=target_gm.crs.to_cf()))
    return reprojected_dataset
예제 #3
0
파일: rectify.py 프로젝트: dcs4cop/xcube
def rectify_dataset(source_ds: xr.Dataset,
                    *,
                    var_names: Union[str, Sequence[str]] = None,
                    source_gm: GridMapping = None,
                    xy_var_names: Tuple[str, str] = None,
                    target_gm: GridMapping = None,
                    tile_size: Union[int, Tuple[int, int]] = None,
                    is_j_axis_up: bool = None,
                    output_ij_names: Tuple[str, str] = None,
                    compute_subset: bool = True,
                    uv_delta: float = 1e-3) -> Optional[xr.Dataset]:
    """
    Reproject dataset *source_ds* using its per-pixel
    x,y coordinates or the given *source_gm*.

    The function expects *source_ds* or the given
    *source_gm* to have either one- or two-dimensional
    coordinate variables that provide spatial x,y coordinates
    for every data variable with the same spatial dimensions.

    For example, a dataset may comprise variables with
    spatial dimensions ``var(..., y_dim, x_dim)``,
    then one the function expects coordinates to be provided
    in two forms:

    1. One-dimensional ``x_var(x_dim)``
       and ``y_var(y_dim)`` (coordinate) variables.
    2. Two-dimensional ``x_var(y_dim, x_dim)``
       and ``y_var(y_dim, x_dim)`` (coordinate) variables.

    If *target_gm* is given and it defines a tile size
    or *tile_size* is given, and the number of tiles is
    greater than one in the output's x- or y-direction, then the
    returned dataset will be composed of lazy, chunked dask
    arrays. Otherwise the returned dataset will be composed
    of ordinary numpy arrays.

    :param source_ds: Source dataset grid mapping.
    :param var_names: Optional variable name or sequence of
        variable names.
    :param source_gm: Target dataset grid mapping.
    :param xy_var_names: Optional tuple of the x- and y-coordinate
        variables in *source_ds*. Ignored if *source_gm* is given.
    :param target_gm: Optional output geometry. If not given,
        output geometry will be computed to spatially fit *dataset*
        and to retain its spatial resolution.
    :param tile_size: Optional tile size for the output.
    :param is_j_axis_up: Whether y coordinates are increasing with
        positive image j axis.
    :param output_ij_names: If given, a tuple of variable names in
        which to store the computed source pixel coordinates in
        the returned output.
    :param compute_subset: Whether to compute a spatial subset
        from *dataset* using *output_geom*. If set, the function
        may return ``None`` in case there is no overlap.
    :param uv_delta: A normalized value that is used to determine
        whether x,y coordinates in the output are contained
        in the triangles defined by the input x,y coordinates.
        The higher this value, the more inaccurate the rectification
        will be.
    :return: a reprojected dataset, or None if the requested output
        does not intersect with *dataset*.
    """
    if source_gm is None:
        source_gm = GridMapping.from_dataset(source_ds,
                                             xy_var_names=xy_var_names)

    src_attrs = dict(source_ds.attrs)

    if target_gm is None:
        target_gm = source_gm.to_regular(tile_size=tile_size)
    elif compute_subset:
        source_ds_subset = select_spatial_subset(
            source_ds,
            xy_bbox=target_gm.xy_bbox,
            ij_border=1,
            xy_border=0.5 * (target_gm.x_res + target_gm.y_res),
            grid_mapping=source_gm)
        if source_ds_subset is None:
            return None
        if source_ds_subset is not source_ds:
            # TODO: GridMapping.from_dataset() may be expensive.
            #   Find a more effective way.
            source_gm = GridMapping.from_dataset(source_ds_subset)
            source_ds = source_ds_subset

    # if src_geo_coding.xy_var_names != output_geom.xy_var_names:
    #     output_geom = output_geom.derive(
    #           xy_var_names=src_geo_coding.xy_var_names
    #     )
    # if src_geo_coding.xy_dim_names != output_geom.xy_dim_names:
    #     output_geom = output_geom.derive(
    #           xy_dim_names=src_geo_coding.xy_dim_names
    #     )

    if tile_size is not None or is_j_axis_up is not None:
        target_gm = target_gm.derive(tile_size=tile_size,
                                     is_j_axis_up=is_j_axis_up)

    src_vars = _select_variables(source_ds, source_gm, var_names)

    if target_gm.is_tiled:
        compute_dst_src_ij_images = _compute_ij_images_xarray_dask
        compute_dst_var_image = _compute_var_image_xarray_dask
    else:
        compute_dst_src_ij_images = _compute_ij_images_xarray_numpy
        compute_dst_var_image = _compute_var_image_xarray_numpy

    dst_src_ij_array = compute_dst_src_ij_images(source_gm, target_gm,
                                                 uv_delta)

    dst_x_dim, dst_y_dim = target_gm.xy_dim_names
    dst_dims = dst_y_dim, dst_x_dim
    dst_ds_coords = target_gm.to_coords()
    dst_vars = dict()
    for src_var_name, src_var in src_vars.items():
        dst_var_dims = src_var.dims[0:-2] + dst_dims
        dst_var_coords = {
            d: src_var.coords[d]
            for d in dst_var_dims if d in src_var.coords
        }
        dst_var_coords.update(
            {d: dst_ds_coords[d]
             for d in dst_var_dims if d in dst_ds_coords})
        dst_var_array = compute_dst_var_image(src_var,
                                              dst_src_ij_array,
                                              fill_value=np.nan)
        dst_var = xr.DataArray(dst_var_array,
                               dims=dst_var_dims,
                               coords=dst_var_coords,
                               attrs=src_var.attrs)
        dst_vars[src_var_name] = dst_var

    if output_ij_names:
        output_i_name, output_j_name = output_ij_names
        dst_ij_coords = {
            d: dst_ds_coords[d]
            for d in dst_dims if d in dst_ds_coords
        }
        dst_vars[output_i_name] = xr.DataArray(dst_src_ij_array[0],
                                               dims=dst_dims,
                                               coords=dst_ij_coords)
        dst_vars[output_j_name] = xr.DataArray(dst_src_ij_array[1],
                                               dims=dst_dims,
                                               coords=dst_ij_coords)

    return xr.Dataset(dst_vars, coords=dst_ds_coords, attrs=src_attrs)