예제 #1
0
 def __init__(self, save_interval_step, is_training=True):
     super(CheckpointHook, self).__init__()
     self._global_step = get_global_step()
     self._save_interval = save_interval_step
     self._ckpt_dir = get_ckpt_dir()
     self._saver = Saver(self._ckpt_dir)
     self._is_training = is_training
     self._save_cnt = 0
     self._first_run = True
예제 #2
0
 def __init__(self, save_interval_step, is_training=True, export_graph=True, as_text=True):
     super(CheckpointHook, self).__init__()
     self._global_step = get_global_step()
     self._save_interval = save_interval_step
     self._ckpt_dir = get_ckpt_dir()
     self._saver = Saver()
     self._is_training = is_training
     self._save_cnt = 0
     self._first_run = True
     self._export_graph = export_graph
     self._as_text = as_text
예제 #3
0
    def __init__(self, save_interval_step=None, save_interval_secs=None,
                 is_training=True, meta=None, tf_backend=False, max_to_keep=5,
                 tf_graph_name=None):
        super(CheckpointHook, self).__init__(priority=3000)
        self._global_step = get_global_step()
        self._save_interval_step = save_interval_step
        self._save_interval_secs = save_interval_secs
        self._ckpt_dir = get_ckpt_dir()
        self._saver = Saver(self._ckpt_dir, tf_graph_name)
        self._is_training = is_training
        self._last_save_step = 0
        self._last_save_time = time.time()
        self._meta = meta
        self._max_to_keep = max_to_keep
        self._ckpt_queue = []

        if self._save_interval_step is None and self._save_interval_secs is None:
            print("Checkpoint interval_steps and interval_secs both not set, use default 10000 steps.")
            self._save_interval_step = 10000
        elif self._save_interval_step is not None and self._save_interval_secs is not None:
            raise ValueError("Checkpoint interval_steps and interval_secs can't be both set.")

        self.gstep_val = 0
        self.meta_val = None
예제 #4
0
파일: train.py 프로젝트: mindis/tdm_mock
def train(is_training=True):
    #np.set_printoptions(threshold='nan')
    if is_training or xdl.get_task_index() == 0:
        init()
    else:
        return

    file_type = xdl.parsers.txt
    if is_training:
        data_io = xdl.DataIO("tdm", file_type=file_type, fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000", enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i), type=xdl.features.sparse, table=1)
        data_io.feature(name="unit_id_expand", type=xdl.features.sparse, table=0)

        data_io.batch_size(intconf('train_batch_size'))
        data_io.epochs(intconf('train_epochs'))
        data_io.threads(intconf('train_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('train_sample') + '_' + r'[\d]+'
        sharding = xdl.DataSharding(data_io.fs())
        sharding.add_path(data)
        paths = sharding.partition(rank=xdl.get_task_index(), size=xdl.get_task_num())
        print 'train: sharding.partition() =', paths
        data_io.add_path(paths)
        iop = xdl.GetIOP("TDMOP")
    else:
        data_io = xdl.DataIO("tdm", file_type=file_type, fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000", enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i), type=xdl.features.sparse, table=1)
        data_io.feature(name="unit_id_expand", type=xdl.features.sparse, table=0)

        data_io.batch_size(intconf('predict_batch_size'))
        data_io.epochs(intconf('predict_epochs'))
        data_io.threads(intconf('predict_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('test_sample')
        data_io.add_path(data)
        print 'predict: add_path =', data
        iop = xdl.GetIOP("TDMPREDICTOP")
        #data_io.finish_delay(True)
    assert iop is not None
    key_value = {}
    key_value["key"] = "value"
    key_value["debug"] = conf('tdmop_debug')
    key_value["layer_counts"] = conf('tdmop_layer_counts')
    key_value["pr_test_each_layer_retrieve_num"] = "400"
    key_value["pr_test_final_layer_retrieve_num"] = "200"
    iop.init(key_value)
    data_io.add_op(iop)
    data_io.split_group(False)
    if not is_training:
        data_io.keep_sample(True)
        data_io.pause(intconf('predict_io_pause_num'), True)
    data_io.startup()

    if not is_training:
        if xdl.get_task_index() == 0:
            saver = xdl.Saver()
            saver.restore(conf('saver_ckpt'))

    batch = data_io.read()

    emb_combiner = 'mean'    # mean | sum
    ind = batch["indicators"][0]
    ids = batch["_ids"][0]
    emb = []
    emb_dim = 24
    if is_training:
        feature_add_probability = 1.
    else:
        feature_add_probability = 0.
    import xdl.python.sparse_engine.embedding as embedding
    emb_name = "item_emb"
    for i in xrange(1, feature_count + 1):
        #emb_name = "item_%s_emb" % i
        eb = xdl.embedding(emb_name, batch["item_%s" % i], xdl.Normal(stddev=0.001), emb_dim, 50000, emb_combiner, vtype="hash", feature_add_probability=feature_add_probability)
        with xdl.device('GPU'):
            eb_take = xdl.take_op(eb, batch["indicators"][0])
        eb_take.set_shape(eb.shape)
        emb.append(eb_take)
    #emb_name = "unit_id_expand_emb"
    unit_id_expand_emb = xdl.embedding(emb_name, batch["unit_id_expand"], xdl.Normal(stddev=0.001), emb_dim, 50000, emb_combiner, vtype="hash", feature_add_probability=feature_add_probability)

    @xdl.mxnet_wrapper(is_training=is_training, device_type='gpu')
    def dnn_model_define(user_input, indicator, unit_id_emb, label, bs, eb_dim, fea_groups, active_op='prelu', use_batch_norm=True):
        # 把用户输入按fea_groups划分窗口,窗口内做avg pooling
        fea_groups = [int(s) for s in fea_groups.split(',')]
        total_group_length = np.sum(np.array(fea_groups))
        print "fea_groups", fea_groups, "total_group_length", total_group_length, "eb_dim", eb_dim
        user_input_before_reshape = mx.sym.concat(*user_input)
        user_input = mx.sym.reshape(user_input_before_reshape, shape=(-1, total_group_length, eb_dim))
    
        layer_data = []
        # start att
        att_user_input = mx.sym.reshape(user_input, (bs, total_group_length, eb_dim))
        att_node_input = mx.sym.reshape(unit_id_emb, (bs, 1, eb_dim))
        att_node_input = mx.sym.broadcast_to(data=att_node_input, shape=(0, total_group_length, 0))
        att_din = mx.sym.concat(att_user_input, att_user_input * att_node_input, att_node_input, dim=2)

        att_active_op = 'prelu'
        att_layer_arr = []
        att_layer1 = FullyConnected3D(3*eb_dim, 36, active_op=att_active_op, version=1, batch_size=bs)
        att_layer_arr.append(att_layer1)
        att_layer2 = FullyConnected3D(36, 1, active_op=att_active_op, version=2, batch_size=bs)
        att_layer_arr.append(att_layer2)

        layer_data.append(att_din)
        for layer in att_layer_arr:
            layer_data.append(layer.call(layer_data[-1]))
        att_dout = layer_data[-1]
        att_dout = mx.sym.broadcast_to(data=att_dout, shape=(0, 0, eb_dim))

        user_input = mx.sym.reshape(user_input, shape=(bs, -1, eb_dim))
        user_input = user_input * att_dout
        # end att

        idx = 0
        for group_length in fea_groups:
            block_before_sum = mx.sym.slice_axis(user_input, axis=1, begin=idx, end=idx+group_length)
            block = mx.sym.sum_axis(block_before_sum, axis=1) / group_length
            if idx == 0:
                grouped_user_input = block
            else:
                grouped_user_input = mx.sym.concat(grouped_user_input, block, dim=1)
            idx += group_length
    
        indicator = mx.symbol.BlockGrad(indicator)
        label = mx.symbol.BlockGrad(label)
        # 按indicator来扩展user fea,然后过网络
        #grouped_user_input_after_take = mx.symbol.take(grouped_user_input, indicator)
        grouped_user_input_after_take = grouped_user_input
        din = mx.symbol.concat(*[grouped_user_input_after_take, unit_id_emb], dim=1)
    
        net_version = "d"
        layer_arr = []
        layer1 = mx_dnn_layer(11 * eb_dim, 128, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (1, net_version))
        layer_arr.append(layer1)
        layer2 = mx_dnn_layer(128, 64, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (2, net_version))
        layer_arr.append(layer2)
        layer3 = mx_dnn_layer(64, 32, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (3, net_version))
        layer_arr.append(layer3)
        layer4 = mx_dnn_layer(32, 2, active_op='', use_batch_norm=False, version="%d_%s" % (4, net_version))
        layer_arr.append(layer4)
        #layer_data = [din]
        layer_data.append(din)
        for layer in layer_arr:
            layer_data.append(layer.call(layer_data[-1]))
        dout = layer_data[-1]
    
        # 正常label两列加和必为1,补全的label为0,故减一之后即可得到-1,作为ignore label
        ph_label_sum = mx.sym.sum(label, axis=1)
        ph_label_ignore = ph_label_sum - 1
        ph_label_ignore = mx.sym.reshape(ph_label_ignore, shape=(-1, 1))
        ph_label_click = mx.sym.slice_axis(label, axis=1, begin=1, end=2)
        ph_label_click = ph_label_click + ph_label_ignore
        ph_label_click = mx.sym.reshape(ph_label_click, shape=(bs, ))
    
        prop = mx.symbol.SoftmaxOutput(data=dout, label=ph_label_click, grad_scale=1.0, use_ignore=True, normalization='valid')
        origin_loss = mx.sym.log(prop) * label
        ph_label_sum = mx.sym.reshape(ph_label_sum, shape=(bs, 1))
        origin_loss = mx.sym.broadcast_mul(origin_loss, ph_label_sum)
        loss = - mx.symbol.sum(origin_loss) / mx.sym.sum(ph_label_sum)
        return prop, loss

    re = dnn_model_define(emb, batch["indicators"][0], unit_id_expand_emb, batch["label"], data_io._batch_size, emb_dim, '20,20,10,10,2,2,2,1,1,1')
    prop = re[0]
    loss = re[1]

    if is_training:
        train_op = xdl.Adam(learning_rate=intconf('learning_rate'), lr_decay=False).optimize()
        #train_op = xdl.SGD(0.1).optimize()
        #fc_1_weight_grad = xdl.get_gradient("fc_w_1_d")
        #fc_1_bias_grad = xdl.get_gradient("fc_b_1_d")
    else:
        fin = data_io.set_prop(prop=prop)

    hooks = []
    if is_training:
        if conf("train_mode") == "sync":
            hooks.append(xdl.SyncRunHook(xdl.get_task_index(), xdl.get_task_num()))
        if xdl.get_task_index() == 0:
            ckpt_hook = xdl.CheckpointHook(intconf('save_checkpoint_interval'))
            hooks.append(ckpt_hook)
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    else:
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    hooks.append(log_hook)

    from xdl.python.training.training_utils import get_global_step
    global_step = get_global_step()

    sess = xdl.TrainSession(hooks)

    elapsed_time = 0.
    statis_begin_loop = 200
    loop_num = 0
    while not sess.should_stop():
        print ">>>>>>>>>>>> %d >>>>>>>>>>>" % loop_num
        begin_time = time.time()
        for itr in xrange(200):
            if is_training:
                result = sess.run([train_op, xdl.get_collection(xdl.UPDATE_OPS)])
                #result = sess.run([train_op, xdl.get_collection(xdl.UPDATE_OPS), unit_id_expand_emb])
            else:
                result = sess.run([loss, fin, global_step.value])
                #result = sess.run([loss, fin, ids, global_step.value])
            if result is None:
                print "result is None, finished success."
                break
            if not is_training:
                print "global_step =", result[-1]
                #print "batch['_ids'] =", result[-2]
            #else:
            #   print "unit_id_expand_emb = { mean =", result[-1].mean(), ", std =", result[-1].std(), "}"
            loop_num += 1
        if loop_num > statis_begin_loop:
            elapsed_time += time.time() - begin_time
            #print 'batch_size = %d, qps = %f batch/s' % (data_io._batch_size, (loop_num - statis_begin_loop) / elapsed_time)

    if is_training:
        xdl.execute(xdl.ps_synchronize_leave_op(np.array(xdl.get_task_index(), dtype=np.int32)))
        if xdl.get_task_index() == 0:
            print 'start put item_emb'
            def _string_to_int8(src):
                return np.array([ord(ch) for ch in src], dtype=np.int8)
            from xdl.python.utils.config import get_ckpt_dir
            output_dir = conf('model_url')
            op = xdl.ps_convert_ckpt_variable_op(checkpoint_dir=_string_to_int8(get_ckpt_dir()), 
                                                 output_dir=_string_to_int8(output_dir), 
                                                 variables=_string_to_int8("item_emb"))
            xdl.execute(op)
            shell_cmd("rm -f data/item_emb")
            shell_cmd("hadoop fs -get %s/item_emb data/item_emb" % output_dir)
            shell_cmd("sed -i 's/..//' data/item_emb")
            shell_cmd("hadoop fs -put -f data/item_emb %s" % output_dir)
            print 'finish put item_emb'
예제 #5
0
 def __init__(self, ckp_model):
     super(RestoreFromHook, self).__init__(priority=1000)
     self._ckp_model = ckp_model
     self._saver = Saver(get_ckpt_dir())
예제 #6
0
 def __init__(self, ckpt_dir=None, tf_graph_name=None):
     self._ckpt_dir = ckpt_dir
     if self._ckpt_dir is None:
       self._ckpt_dir = get_ckpt_dir()
     self._graph_def = _graphdef_to_pb(current_graph()._graph_def)
     self._tf_graph_name = tf_graph_name
예제 #7
0
def train(is_training=True):
    if is_training or xdl.get_task_index() == 0:
        init()
    else:
        return

    file_type = xdl.parsers.txt
    if is_training:
        data_io = xdl.DataIO("tdm",
                             file_type=file_type,
                             fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000",
                             enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i),
                            type=xdl.features.sparse,
                            table=1)
        data_io.feature(name="unit_id_expand",
                        type=xdl.features.sparse,
                        table=0)

        data_io.batch_size(intconf('train_batch_size'))
        data_io.epochs(intconf('train_epochs'))
        data_io.threads(intconf('train_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('train_sample') + '_' + r'[\d]+'
        sharding = xdl.DataSharding(data_io.fs())
        sharding.add_path(data)
        paths = sharding.partition(rank=xdl.get_task_index(),
                                   size=xdl.get_task_num())
        print 'train: sharding.partition() =', paths
        data_io.add_path(paths)
        iop = xdl.GetIOP("TDMOP")
    else:
        data_io = xdl.DataIO("tdm",
                             file_type=file_type,
                             fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000",
                             enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i),
                            type=xdl.features.sparse,
                            table=1)
        data_io.feature(name="unit_id_expand",
                        type=xdl.features.sparse,
                        table=0)
        data_io.feature(name="test_unit_id", type=xdl.features.sparse, table=1)

        data_io.batch_size(intconf('predict_batch_size'))
        data_io.epochs(intconf('predict_epochs'))
        data_io.threads(intconf('predict_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('test_sample')
        data_io.add_path(data)
        print 'predict: add_path =', data
        iop = xdl.GetIOP("TDMPREDICTOP")
        #data_io.finish_delay(True)
    assert iop is not None
    key_value = {}
    key_value["key"] = "value"
    key_value["debug"] = conf('tdmop_debug')
    key_value["layer_counts"] = conf('tdmop_layer_counts')
    key_value["start_sample_layer"] = "22"
    key_value["pr_test_each_layer_retrieve_num"] = "400"
    key_value["pr_test_final_layer_retrieve_num"] = "200"
    if not is_training:
        key_value["expand_mode"] = "vector"
    iop.init(key_value)
    data_io.add_op(iop)
    data_io.split_group(False)
    data_io.startup()

    if not is_training:
        if xdl.get_task_index() == 0:
            saver = xdl.Saver()
            saver.restore(conf('saver_ckpt'))

    batch = data_io.read()

    emb_combiner = 'mean'  # mean | sum
    if not is_training:
        gt_ids = batch["_ids"][-1]
        gt_segments = batch["_segments"][-1]
    emb = []
    emb_dim = 24
    if is_training:
        feature_add_probability = 1.
    else:
        feature_add_probability = 0.
    import xdl.python.sparse_engine.embedding as embedding
    emb_name = "item_emb"
    for i in xrange(1, feature_count + 1):
        eb = xdl.embedding(emb_name,
                           batch["item_%s" % i],
                           xdl.Normal(stddev=0.001),
                           emb_dim,
                           50000,
                           emb_combiner,
                           vtype="hash",
                           feature_add_probability=feature_add_probability)
        with xdl.device('GPU'):
            eb_take = xdl.take_op(eb, batch["indicators"][0])
        eb_take.set_shape(eb.shape)
        emb.append(eb_take)
    unit_id_expand_emb = xdl.embedding(
        emb_name,
        batch["unit_id_expand"],
        xdl.Normal(stddev=0.001),
        emb_dim,
        50000,
        emb_combiner,
        vtype="hash",
        feature_add_probability=feature_add_probability)

    @xdl.mxnet_wrapper(is_training=is_training, device_type='gpu')
    def dnn_model_define(user_input,
                         indicator,
                         unit_id_emb,
                         label,
                         bs,
                         eb_dim,
                         sample_num,
                         fea_groups,
                         active_op='prelu',
                         use_batch_norm=True):
        # 把用户输入按fea_groups划分窗口,窗口内做avg pooling
        fea_groups = [int(s) for s in fea_groups.split(',')]
        total_group_length = np.sum(np.array(fea_groups))
        print "fea_groups", fea_groups, "total_group_length", total_group_length, "eb_dim", eb_dim
        user_input_before_reshape = mx.sym.concat(*user_input)
        user_input = mx.sym.reshape(user_input_before_reshape,
                                    shape=(-1, total_group_length, eb_dim))

        idx = 0
        for group_length in fea_groups:
            block_before_sum = mx.sym.slice_axis(user_input,
                                                 axis=1,
                                                 begin=idx,
                                                 end=idx + group_length)
            block = mx.sym.sum_axis(block_before_sum, axis=1) / group_length
            if idx == 0:
                grouped_user_input = block
            else:
                grouped_user_input = mx.sym.concat(grouped_user_input,
                                                   block,
                                                   dim=1)
            idx += group_length

        indicator = mx.symbol.BlockGrad(indicator)
        label = mx.symbol.BlockGrad(label)
        grouped_user_input_after_take = grouped_user_input

        net_version = "e"
        layer_arr = []
        layer1 = mx_dnn_layer(10 * eb_dim,
                              128,
                              active_op=active_op,
                              use_batch_norm=use_batch_norm,
                              version="%d_%s" % (1, net_version))
        layer_arr.append(layer1)
        layer2 = mx_dnn_layer(128,
                              64,
                              active_op=active_op,
                              use_batch_norm=use_batch_norm,
                              version="%d_%s" % (2, net_version))
        layer_arr.append(layer2)
        layer3 = mx_dnn_layer(64,
                              24,
                              active_op='',
                              use_batch_norm=False,
                              version="%d_%s" % (3, net_version))
        layer_arr.append(layer3)

        layer_data = [grouped_user_input_after_take]
        for layer in layer_arr:
            layer_data.append(layer.call(layer_data[-1]))
        dout = layer_data[-1]

        inner_product = mx.sym.sum(dout * unit_id_emb, axis=1)

        softmax_input = mx.sym.Reshape(inner_product,
                                       shape=(bs / sample_num, sample_num))

        # 用正例的label减1作为softmax的label
        ph_label_click = mx.sym.slice_axis(label, axis=1, begin=1, end=2)
        ph_label_click = mx.sym.reshape(
            ph_label_click, shape=(bs / sample_num, sample_num)) - 1
        ph_label_click = mx.sym.slice_axis(ph_label_click,
                                           axis=1,
                                           begin=0,
                                           end=1)
        ph_label_click = mx.sym.reshape(ph_label_click,
                                        shape=(bs / sample_num, ))

        prop = mx.symbol.SoftmaxOutput(data=softmax_input,
                                       label=ph_label_click,
                                       normalization='valid',
                                       use_ignore=True)

        positive_prop = mx.sym.slice_axis(prop, axis=1, begin=0, end=1)
        positive_prop = mx.sym.reshape(positive_prop,
                                       shape=(bs / sample_num, ))

        # 实际的有效样本数量是(bs/sample_num)减去需要ignore的label数量
        loss = -mx.sym.sum(mx.symbol.log(positive_prop)) / (
            bs / sample_num + mx.sym.sum(ph_label_click))

        user_vector = mx.sym.reshape(dout,
                                     shape=(bs / sample_num, sample_num,
                                            eb_dim))
        user_vector = mx.sym.slice_axis(user_vector, axis=1, begin=0, end=1)
        user_vector = mx.sym.reshape(user_vector,
                                     shape=(bs / sample_num, eb_dim))

        return prop, loss, mx.sym.BlockGrad(user_vector)

    if is_training:
        re = dnn_model_define(emb, batch["indicators"][0], unit_id_expand_emb,
                              batch["label"], data_io._batch_size, emb_dim,
                              600, '20,20,10,10,2,2,2,1,1,1')
    else:
        re = dnn_model_define(emb, batch["indicators"][0], unit_id_expand_emb,
                              batch["label"], data_io._batch_size, emb_dim, 1,
                              '20,20,10,10,2,2,2,1,1,1')
    prop = re[0]
    loss = re[1]

    if is_training:
        train_op = xdl.Adam(learning_rate=intconf('learning_rate')).optimize()
    else:
        user_vector = re[2]

    hooks = []
    if is_training:
        if conf("train_mode") == "sync":
            hooks.append(
                xdl.SyncRunHook(xdl.get_task_index(), xdl.get_task_num()))
        if xdl.get_task_index() == 0:
            ckpt_hook = xdl.CheckpointHook(intconf('save_checkpoint_interval'))
            hooks.append(ckpt_hook)
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    else:
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    hooks.append(log_hook)

    from xdl.python.training.training_utils import get_global_step
    global_step = get_global_step()

    sess = xdl.TrainSession(hooks)

    elapsed_time = 0.
    statis_begin_loop = 200
    loop_num = 0

    if not is_training:
        urun_re = iop.urun({"get_level_ids": key_value["start_sample_layer"]})
        item_num = len(urun_re)
        item_ids = np.array([int(iid) for iid in urun_re.keys()],
                            dtype=np.int64).reshape((item_num, 1))
        print 'item_ids shape: '
        print item_ids.shape
        zeros = np.zeros((item_num, 1), dtype=np.int64)
        hash_ids = np.concatenate((zeros, item_ids), axis=1)
        item_embeddings = xdl.execute(
            xdl.ps_sparse_pull_op(hash_ids,
                                  var_name="item_emb",
                                  var_type="hash",
                                  save_ratio=1.0,
                                  otype=xdl.DataType.float))
        item_embeddings = item_embeddings.transpose()
        print 'item_embeddings shape: '
        print item_embeddings.shape

        hit_num_list = []
        precision_list = []
        recall_list = []
        gt_num_list = []
        user_idx = 1

    while not sess.should_stop():
        print ">>>>>>>>>>>> %d >>>>>>>>>>>" % loop_num
        begin_time = time.time()
        for itr in xrange(200):
            if is_training:
                result = sess.run(
                    [train_op, xdl.get_collection(xdl.UPDATE_OPS)])
            else:
                result = sess.run(
                    [user_vector, global_step.value, gt_ids, gt_segments])
            if result is None:
                print "result is None, finished success."
                break
            if not is_training:
                print "global_step =", result[1]
                batch_uv = result[0]
                batch_gt = result[2]
                batch_seg = result[3]

                batch_uv = batch_uv[0:len(batch_seg)]
                batch_scores = np.matmul(batch_uv, item_embeddings)

                sorted_idx = np.argsort(-batch_scores, axis=1)

                sorted_idx = sorted_idx[:, :int(
                    key_value["pr_test_final_layer_retrieve_num"])]
                gt_id_start_idx = 0
                for i in xrange(len(batch_seg)):
                    pred_set = set(item_ids[sorted_idx[i, :], 0])
                    gt_dict = {}
                    for gt in batch_gt[gt_id_start_idx:batch_seg[i], 1]:
                        if gt in gt_dict:
                            gt_dict[gt] += 1
                        else:
                            gt_dict[gt] = 1

                    test_gt_list = batch_gt[gt_id_start_idx:batch_seg[i],
                                            1].tolist()
                    test_gt_str = ','.join(
                        [str(gtid) for gtid in test_gt_list])
                    test_pred_list = item_ids[sorted_idx[i, :], 0].tolist()
                    test_pred_str = ','.join(
                        [str(gtid) for gtid in test_pred_list])

                    user_idx += 1

                    gt_set = set(batch_gt[gt_id_start_idx:batch_seg[i], 1])
                    comm_set = gt_set.intersection(pred_set)

                    hit_num = sum([
                        float(gt_dict[item]) if item in gt_dict else 0.0
                        for item in comm_set
                    ])
                    hit_num_list.append(hit_num)

                    if len(pred_set) > 0:
                        precision = hit_num / len(pred_set)
                    else:
                        precision = 0.0

                    if len(gt_dict) > 0:
                        recall = hit_num / (batch_seg[i] - gt_id_start_idx)
                    else:
                        recall = 0.0

                    precision_list.append(precision)
                    recall_list.append(recall)
                    gt_num_list.append(float(batch_seg[i] - gt_id_start_idx))

                    gt_id_start_idx = batch_seg[i]

                print "=================================================="
                print 'predicted user num is: %d' % len(hit_num_list)
                print 'gt num is: %f' % sum(gt_num_list)
                print 'precision: %f' % (sum(precision_list) /
                                         len(hit_num_list))
                print 'recall: %f' % (sum(recall_list) / len(hit_num_list))
                print 'global recall: %f' % (sum(hit_num_list) /
                                             sum(gt_num_list))
                print "=================================================="

            loop_num += 1
        if loop_num > statis_begin_loop:
            elapsed_time += time.time() - begin_time
            #print 'batch_size = %d, qps = %f batch/s' % (data_io._batch_size, (loop_num - statis_begin_loop) / elapsed_time)

    if not is_training:
        print "=================================================="
        print 'predicted user num is: %d' % len(hit_num_list)
        print 'gt num is: %f' % sum(gt_num_list)
        print 'precision: %f' % (sum(precision_list) / len(hit_num_list))
        print 'recall: %f' % (sum(recall_list) / len(hit_num_list))
        print 'global recall: %f' % (sum(hit_num_list) / sum(gt_num_list))
        print "=================================================="

    if is_training:
        xdl.execute(
            xdl.ps_synchronize_leave_op(
                np.array(xdl.get_task_index(), dtype=np.int32)))
        if xdl.get_task_index() == 0:
            print 'start put item_emb'

            def _string_to_int8(src):
                return np.array([ord(ch) for ch in src], dtype=np.int8)

            from xdl.python.utils.config import get_ckpt_dir
            output_dir = conf('model_url')
            op = xdl.ps_convert_ckpt_variable_op(
                checkpoint_dir=_string_to_int8(get_ckpt_dir()),
                output_dir=_string_to_int8(output_dir),
                variables=_string_to_int8("item_emb"))
            xdl.execute(op)
            shell_cmd("rm -f data/item_emb")
            shell_cmd("hadoop fs -get %s/item_emb data/item_emb" % output_dir)
            shell_cmd("sed -i 's/..//' data/item_emb")
            shell_cmd("hadoop fs -put -f data/item_emb %s" % output_dir)
            print 'finish put item_emb'
예제 #8
0
def train(is_training=True):
    if is_training or xdl.get_task_index() == 0:
        init()
    else:
        return

    file_type = xdl.parsers.txt
    if is_training:
        data_io = xdl.DataIO("tdm", file_type=file_type, fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000", enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i), type=xdl.features.sparse, table=1)
        data_io.feature(name="unit_id_expand", type=xdl.features.sparse, table=0)

        data_io.batch_size(intconf('train_batch_size'))
        data_io.epochs(intconf('train_epochs'))
        data_io.threads(intconf('train_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('train_sample') + '_' + r'[\d]+'
        sharding = xdl.DataSharding(data_io.fs())
        sharding.add_path(data)
        paths = sharding.partition(rank=xdl.get_task_index(), size=xdl.get_task_num())
        print 'train: sharding.partition() =', paths
        data_io.add_path(paths)
        iop = xdl.GetIOP("TDMOP")
    else:
        data_io = xdl.DataIO("tdm", file_type=file_type, fs_type=xdl.fs.hdfs,
                             namenode="hdfs://your/namenode/hdfs/path:9000", enable_state=False)

        feature_count = 69
        for i in xrange(1, feature_count + 1):
            data_io.feature(name=("item_%s" % i), type=xdl.features.sparse, table=1)
        data_io.feature(name="unit_id_expand", type=xdl.features.sparse, table=0)
        data_io.feature(name="test_unit_id", type=xdl.features.sparse, table=1)

        data_io.batch_size(intconf('predict_batch_size'))
        data_io.epochs(intconf('predict_epochs'))
        data_io.threads(intconf('predict_threads'))
        data_io.label_count(2)
        base_path = '%s/%s/' % (conf('upload_url'), conf('data_dir'))
        data = base_path + conf('test_sample')
        data_io.add_path(data)
        print 'predict: add_path =', data
        iop = xdl.GetIOP("TDMPREDICTOP")
        #data_io.finish_delay(True)
    assert iop is not None
    key_value = {}
    key_value["key"] = "value"
    key_value["debug"] = conf('tdmop_debug')
    key_value["layer_counts"] = conf('tdmop_layer_counts')
    key_value["start_sample_layer"] = "22"
    key_value["pr_test_each_layer_retrieve_num"] = "400"
    key_value["pr_test_final_layer_retrieve_num"] = "200"
    if not is_training:
        key_value["expand_mode"] = "vector"
    iop.init(key_value)
    data_io.add_op(iop)
    data_io.split_group(False)
    data_io.startup()

    if not is_training:
        if xdl.get_task_index() == 0:
            saver = xdl.Saver()
            saver.restore(conf('saver_ckpt'))

    batch = data_io.read()

    emb_combiner = 'mean'    # mean | sum
    if not is_training:
        gt_ids = batch["_ids"][-1]
        gt_segments = batch["_segments"][-1]
    emb = []
    emb_dim = 24
    if is_training:
        feature_add_probability = 1.
    else:
        feature_add_probability = 0.
    import xdl.python.sparse_engine.embedding as embedding
    emb_name = "item_emb"
    for i in xrange(1, feature_count + 1):
        eb = xdl.embedding(emb_name, batch["item_%s" % i], xdl.Normal(stddev=0.001), emb_dim, 50000, emb_combiner, vtype="hash", feature_add_probability=feature_add_probability)
        with xdl.device('GPU'):
            eb_take = xdl.take_op(eb, batch["indicators"][0])
        eb_take.set_shape(eb.shape)
        emb.append(eb_take)
    unit_id_expand_emb = xdl.embedding(emb_name, batch["unit_id_expand"], xdl.Normal(stddev=0.001), emb_dim, 50000, emb_combiner, vtype="hash", feature_add_probability=feature_add_probability)

    @xdl.mxnet_wrapper(is_training=is_training, device_type='gpu')
    def dnn_model_define(user_input, indicator, unit_id_emb, label, bs, eb_dim, sample_num, fea_groups, active_op='prelu', use_batch_norm=True):
        # 把用户输入按fea_groups划分窗口,窗口内做avg pooling
        fea_groups = [int(s) for s in fea_groups.split(',')]
        total_group_length = np.sum(np.array(fea_groups))
        print "fea_groups", fea_groups, "total_group_length", total_group_length, "eb_dim", eb_dim
        user_input_before_reshape = mx.sym.concat(*user_input)
        user_input = mx.sym.reshape(user_input_before_reshape, shape=(-1, total_group_length, eb_dim))

        idx = 0
        for group_length in fea_groups:
            block_before_sum = mx.sym.slice_axis(user_input, axis=1, begin=idx, end=idx + group_length)
            block = mx.sym.sum_axis(block_before_sum, axis=1) / group_length
            if idx == 0:
                grouped_user_input = block
            else:
                grouped_user_input = mx.sym.concat(grouped_user_input, block, dim=1)
            idx += group_length

        indicator = mx.symbol.BlockGrad(indicator)
        label = mx.symbol.BlockGrad(label)
        grouped_user_input_after_take = grouped_user_input

        net_version = "e"
        layer_arr = []
        layer1 = mx_dnn_layer(10 * eb_dim, 128, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (1, net_version))
        layer_arr.append(layer1)
        layer2 = mx_dnn_layer(128, 64, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (2, net_version))
        layer_arr.append(layer2)
        layer3 = mx_dnn_layer(64, 24, active_op='', use_batch_norm=False, version="%d_%s" % (3, net_version))
        layer_arr.append(layer3)

        layer_data = [grouped_user_input_after_take]
        for layer in layer_arr:
            layer_data.append(layer.call(layer_data[-1]))
        dout = layer_data[-1]

        inner_product = mx.sym.sum(dout * unit_id_emb, axis=1)

        softmax_input = mx.sym.Reshape(inner_product,
                                       shape=(
                                           bs / sample_num,
                                           sample_num
                                       )
                                       )

        # 用正例的label减1作为softmax的label
        ph_label_click = mx.sym.slice_axis(label, axis=1, begin=1, end=2)
        ph_label_click = mx.sym.reshape(ph_label_click, shape=(bs / sample_num, sample_num)) - 1
        ph_label_click = mx.sym.slice_axis(ph_label_click, axis=1, begin=0, end=1)
        ph_label_click = mx.sym.reshape(ph_label_click, shape=(bs / sample_num, ))

        prop = mx.symbol.SoftmaxOutput(data=softmax_input, label=ph_label_click, normalization='valid', use_ignore=True)

        positive_prop = mx.sym.slice_axis(prop, axis=1, begin=0, end=1)
        positive_prop = mx.sym.reshape(positive_prop,
                                       shape=(bs / sample_num, )
                                       )

        # 实际的有效样本数量是(bs/sample_num)减去需要ignore的label数量
        loss = -mx.sym.sum(mx.symbol.log(positive_prop)) / (bs / sample_num + mx.sym.sum(ph_label_click))

        user_vector = mx.sym.reshape(dout, shape=(bs / sample_num, sample_num, eb_dim))
        user_vector = mx.sym.slice_axis(user_vector, axis=1, begin=0, end=1)
        user_vector = mx.sym.reshape(user_vector, shape=(bs / sample_num, eb_dim))

        return prop, loss, mx.sym.BlockGrad(user_vector)

    if is_training:
        re = dnn_model_define(emb, batch["indicators"][0], unit_id_expand_emb, batch["label"], data_io._batch_size, emb_dim, 600, '20,20,10,10,2,2,2,1,1,1')
    else:
        re = dnn_model_define(emb, batch["indicators"][0], unit_id_expand_emb, batch["label"], data_io._batch_size, emb_dim, 1, '20,20,10,10,2,2,2,1,1,1')
    prop = re[0]
    loss = re[1]

    if is_training:
        train_op = xdl.Adam(learning_rate=intconf('learning_rate')).optimize()
    else:
        user_vector = re[2]
 
    hooks = []
    if is_training:
        if conf("train_mode") == "sync":
            hooks.append(xdl.SyncRunHook(xdl.get_task_index(), xdl.get_task_num()))
        if xdl.get_task_index() == 0:
            ckpt_hook = xdl.CheckpointHook(intconf('save_checkpoint_interval'))
            hooks.append(ckpt_hook)
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    else:
        log_hook = xdl.LoggerHook([loss], "#### loss:{0}")
    hooks.append(log_hook)

    from xdl.python.training.training_utils import get_global_step
    global_step = get_global_step()

    sess = xdl.TrainSession(hooks)

    elapsed_time = 0.
    statis_begin_loop = 200
    loop_num = 0

    if not is_training:
        urun_re = iop.urun({"get_level_ids": key_value["start_sample_layer"]})
        item_num = len(urun_re)
        item_ids = np.array([int(iid) for iid in urun_re.keys()], dtype=np.int64).reshape((item_num, 1))
        print 'item_ids shape: '
        print item_ids.shape
        zeros = np.zeros((item_num, 1), dtype=np.int64)
        hash_ids = np.concatenate((zeros, item_ids), axis=1)
        item_embeddings = xdl.execute(xdl.ps_sparse_pull_op(hash_ids, var_name="item_emb", var_type="hash", save_ratio=1.0, otype=xdl.DataType.float))
        item_embeddings = item_embeddings.transpose()
        print 'item_embeddings shape: '
        print item_embeddings.shape

        hit_num_list = []
        precision_list = []
        recall_list = []
        gt_num_list = []
        user_idx = 1

    while not sess.should_stop():
        print ">>>>>>>>>>>> %d >>>>>>>>>>>" % loop_num
        begin_time = time.time()
        for itr in xrange(200):
            if is_training:
                result = sess.run([train_op, xdl.get_collection(xdl.UPDATE_OPS)])
            else:
                result = sess.run([user_vector, global_step.value, gt_ids, gt_segments])
            if result is None:
                print "result is None, finished success."
                break
            if not is_training:
                print "global_step =", result[1]
                batch_uv = result[0]
                batch_gt = result[2]
                batch_seg = result[3]

                batch_uv = batch_uv[0:len(batch_seg)]
                batch_scores = np.matmul(batch_uv, item_embeddings)

                sorted_idx = np.argsort(-batch_scores, axis=1)

                sorted_idx = sorted_idx[:, :int(key_value["pr_test_final_layer_retrieve_num"])]
                gt_id_start_idx = 0
                for i in xrange(len(batch_seg)):
                    pred_set = set(item_ids[sorted_idx[i, :], 0])
                    gt_dict = {}
                    for gt in batch_gt[gt_id_start_idx:batch_seg[i], 1]:
                        if gt in gt_dict:
                            gt_dict[gt] += 1
                        else:
                            gt_dict[gt] = 1

                    test_gt_list = batch_gt[gt_id_start_idx:batch_seg[i], 1].tolist()
                    test_gt_str = ','.join([str(gtid) for gtid in test_gt_list])
                    test_pred_list = item_ids[sorted_idx[i, :], 0].tolist()
                    test_pred_str = ','.join([str(gtid) for gtid in test_pred_list])

                    user_idx += 1

                    gt_set = set(batch_gt[gt_id_start_idx:batch_seg[i], 1])
                    comm_set = gt_set.intersection(pred_set)

                    hit_num = sum([float(gt_dict[item]) if item in gt_dict else 0.0 for item in comm_set])
                    hit_num_list.append(hit_num)

                    if len(pred_set) > 0:
                        precision = hit_num / len(pred_set)
                    else:
                        precision = 0.0

                    if len(gt_dict) > 0:
                        recall = hit_num / (batch_seg[i] - gt_id_start_idx)
                    else:
                        recall = 0.0

                    precision_list.append(precision)
                    recall_list.append(recall)
                    gt_num_list.append(float(batch_seg[i] - gt_id_start_idx))

                    gt_id_start_idx = batch_seg[i]

                print "=================================================="
                print 'predicted user num is: %d' % len(hit_num_list)
                print 'gt num is: %f' % sum(gt_num_list)
                print 'precision: %f' % (sum(precision_list) / len(hit_num_list))
                print 'recall: %f' % (sum(recall_list) / len(hit_num_list))
                print 'global recall: %f' % (sum(hit_num_list) / sum(gt_num_list))
                print "=================================================="

            loop_num += 1
        if loop_num > statis_begin_loop:
            elapsed_time += time.time() - begin_time
            #print 'batch_size = %d, qps = %f batch/s' % (data_io._batch_size, (loop_num - statis_begin_loop) / elapsed_time)

    if not is_training:
        print "=================================================="
        print 'predicted user num is: %d' % len(hit_num_list)
        print 'gt num is: %f' % sum(gt_num_list)
        print 'precision: %f' % (sum(precision_list) / len(hit_num_list))
        print 'recall: %f' % (sum(recall_list) / len(hit_num_list))
        print 'global recall: %f' % (sum(hit_num_list) / sum(gt_num_list))
        print "=================================================="

    if is_training:
        xdl.execute(xdl.ps_synchronize_leave_op(np.array(xdl.get_task_index(), dtype=np.int32)))
        if xdl.get_task_index() == 0:
            print 'start put item_emb'

            def _string_to_int8(src):
                return np.array([ord(ch) for ch in src], dtype=np.int8)
            from xdl.python.utils.config import get_ckpt_dir
            output_dir = conf('model_url')
            op = xdl.ps_convert_ckpt_variable_op(checkpoint_dir=_string_to_int8(get_ckpt_dir()),
                                                 output_dir=_string_to_int8(output_dir),
                                                 variables=_string_to_int8("item_emb"))
            xdl.execute(op)
            shell_cmd("rm -f data/item_emb")
            shell_cmd("hadoop fs -get %s/item_emb data/item_emb" % output_dir)
            shell_cmd("sed -i 's/..//' data/item_emb")
            shell_cmd("hadoop fs -put -f data/item_emb %s" % output_dir)
            print 'finish put item_emb'