예제 #1
0
def run(show_plots,args):
  from xfel.command_line.cxi_merge import master_phil
  phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show()
  work_params = phil.work.extract()
  from xfel.merging.phil_validation import application,samosa
  application(work_params)
  samosa(work_params)
  if ("--help" in args) :
    libtbx.phil.parse(master_phil.show())
    return

  datadir = "."
  written_files = []
  if work_params.levmar.compute_cc_half:

    for half_data_flag in [1,2,0]:
      case = execute_case(datadir, work_params, plot=show_plots, half_data_flag=half_data_flag)
      assert len(case.Fit_I)==len(case.ordered_intensities.indices())==len(case.reference_millers.indices())
      model_subset = case.reference_millers[0:len(case.Fit_I)]
      fitted_miller_array = miller.array (miller_set = model_subset,
                                        data = case.Fit_I, sigmas = case.Fit_I_stddev)
      fitted_miller_array.set_observation_type_xray_intensity()
      output_result = fitted_miller_array.select(case.I_visited==1)
      outfile = "%s_s%1d_levmar.mtz"%(work_params.output.prefix,half_data_flag)
      output_result.show_summary(prefix="%s: "%outfile)
      mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None)
      mtz_obj = mtz_out.mtz_object()
      mtz_obj.write(outfile)
      written_files.append(outfile)
      print "OK s%1d"%half_data_flag
      #raw_input("OK?")

    """Guest code to retrieve the modified orientations after rotational fitting is done"""
    if "Rxy" in work_params.levmar.parameter_flags:
      all_A = [e.crystal.get_A() for e in case.experiments.get_experiments()]
      all_files = case.experiments.get_files()
      all_x = case.Fit["Ax"]
      all_y = case.Fit["Ay"]

      from scitbx import matrix
      x_axis = matrix.col((1.,0.,0.))
      y_axis = matrix.col((0.,1.,0.))
      out = open("aaaaa","w")
      for x in xrange(len(all_A)):
        Rx = x_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_x[x], deg=True)
        Ry = y_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_y[x], deg=True)
        modified_A = Rx * Ry * all_A[x]
        filename = all_files[x]
        print >>out, filename, " ".join([str(a) for a in modified_A.elems])



    work_params.scaling.algorithm="levmar"
    from xfel.cxi.cxi_cc import run_cc
    run_cc(work_params,work_params.model_reindex_op,sys.stdout)

  else:
    execute_case(datadir, work_params, plot=show_plots)
예제 #2
0
def run(show_plots,args):
  from xfel.command_line.cxi_merge import master_phil
  phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show()
  work_params = phil.work.extract()
  from xfel.merging.phil_validation import application,samosa
  application(work_params)
  samosa(work_params)
  if ("--help" in args) :
    libtbx.phil.parse(master_phil.show())
    return

  datadir = "."
  written_files = []
  if work_params.levmar.compute_cc_half:

    for half_data_flag in [1,2,0]:
      case = execute_case(datadir, work_params, plot=show_plots, half_data_flag=half_data_flag)
      assert len(case.Fit_I)==len(case.ordered_intensities.indices())==len(case.reference_millers.indices())
      model_subset = case.reference_millers[0:len(case.Fit_I)]
      fitted_miller_array = miller.array (miller_set = model_subset,
                                        data = case.Fit_I, sigmas = case.Fit_I_stddev)
      fitted_miller_array.set_observation_type_xray_intensity()
      output_result = fitted_miller_array.select(case.I_visited==1)
      outfile = "%s_s%1d_levmar.mtz"%(work_params.output.prefix,half_data_flag)
      output_result.show_summary(prefix="%s: "%outfile)
      mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None)
      mtz_obj = mtz_out.mtz_object()
      mtz_obj.write(outfile)
      written_files.append(outfile)
      print "OK s%1d"%half_data_flag
      #raw_input("OK?")

    """Guest code to retrieve the modified orientations after rotational fitting is done"""
    if "Rxy" in work_params.levmar.parameter_flags:
      all_A = [e.crystal.get_A() for e in case.experiments.get_experiments()]
      all_files = case.experiments.get_files()
      all_x = case.Fit["Ax"]
      all_y = case.Fit["Ay"]

      from scitbx import matrix
      x_axis = matrix.col((1.,0.,0.))
      y_axis = matrix.col((0.,1.,0.))
      out = open("aaaaa","w")
      for x in xrange(len(all_A)):
        Rx = x_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_x[x], deg=True)
        Ry = y_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_y[x], deg=True)
        modified_A = Rx * Ry * all_A[x]
        filename = all_files[x]
        print >>out, filename, " ".join([str(a) for a in modified_A.elems])



    work_params.scaling.algorithm="levmar"
    from xfel.cxi.cxi_cc import run_cc
    run_cc(work_params,work_params.model_reindex_op,sys.stdout)
예제 #3
0
  table_data.append([""] * len(table_data[0]))
  table_data.append(["All", "", '%8d' % n_frames])
  print >> out
  print >> out, table_utils.format(
    table_data, has_header=1, justify='center', delim=' ')

  reindexing_ops = {"h,k,l":0} # get a list of all reindexing ops for this dataset
  if work_params.merging.reverse_lookup is not None:
    for key in scaler.reverse_lookup:
      if reindexing_ops.get(scaler.reverse_lookup[key], None) is None:
        reindexing_ops[scaler.reverse_lookup[key]]=0
      reindexing_ops[scaler.reverse_lookup[key]]+=1

  from xfel.cxi.cxi_cc import run_cc
  for key in reindexing_ops.keys():
    run_cc(work_params,reindexing_op=key,output=out)

  return result

if (__name__ == "__main__"):
  show_plots = False
  if ("--plots" in sys.argv) :
    sys.argv.remove("--plots")
    show_plots = True
  result = run(args=sys.argv[1:])
  if result is None:
    sys.exit(1)
  if (show_plots) :
    try :
      result.plots.show_all_pyplot()
      from wxtbx.command_line import loggraph
예제 #4
0
                                     has_header=1,
                                     justify='center',
                                     delim=' ')

    reindexing_ops = {
        "h,k,l": 0
    }  # get a list of all reindexing ops for this dataset
    if work_params.merging.reverse_lookup is not None:
        for key in scaler.reverse_lookup:
            if reindexing_ops.get(scaler.reverse_lookup[key], None) is None:
                reindexing_ops[scaler.reverse_lookup[key]] = 0
            reindexing_ops[scaler.reverse_lookup[key]] += 1

    from xfel.cxi.cxi_cc import run_cc
    for key in reindexing_ops.keys():
        run_cc(work_params, reindexing_op=key, output=out)

    return result

if (__name__ == "__main__"):
    show_plots = False
    if ("--plots" in sys.argv):
        sys.argv.remove("--plots")
        show_plots = True
    result = run(args=sys.argv[1:])
    if result is None:
        sys.exit(1)
    if (show_plots):
        try:
            result.plots.show_all_pyplot()
            from wxtbx.command_line import loggraph
예제 #5
0
def run(args):
    phil = iotbx.phil.process_command_line(args=args,
                                           master_string=master_phil).show()
    work_params = phil.work.extract()
    from xfel.merging.phil_validation import application
    application(work_params)
    if ("--help" in args):
        libtbx.phil.parse(master_phil.show())
        return

    if ((work_params.d_min is None) or (work_params.data is None)
            or ((work_params.model is None)
                and work_params.scaling.algorithm != "mark1")):
        raise Usage("cxi.merge "
                    "d_min=4.0 "
                    "data=~/scratch/r0220/006/strong/ "
                    "model=3bz1_3bz2_core.pdb")
    if ((work_params.rescale_with_average_cell)
            and (not work_params.set_average_unit_cell)):
        raise Usage(
            "If rescale_with_average_cell=True, you must also specify " +
            "set_average_unit_cell=True.")
    if work_params.raw_data.sdfac_auto and work_params.raw_data.sdfac_refine:
        raise Usage("Cannot specify both sdfac_auto and sdfac_refine")
    if not work_params.include_negatives_fix_27May2018:
        work_params.include_negatives = False  # use old behavior

    log = open(
        "%s_%s.log" %
        (work_params.output.prefix, work_params.scaling.algorithm), "w")
    out = multi_out()
    out.register("log", log, atexit_send_to=None)
    out.register("stdout", sys.stdout)

    # Verify that the externally supplied isomorphous reference, if
    # present, defines a suitable column of intensities, and exit with
    # error if it does not.  Then warn if it is necessary to generate
    # Bijvoet mates.  Failure to catch these issues here would lead to
    # possibly obscure problems in cxi/cxi_cc.py later on.
    try:
        data_SR = mtz.object(work_params.scaling.mtz_file)
    except RuntimeError:
        pass
    else:
        array_SR = None
        obs_labels = []
        for array in data_SR.as_miller_arrays():
            this_label = array.info().label_string().lower()
            if array.observation_type() is not None:
                obs_labels.append(this_label.split(',')[0])
            if this_label.find('fobs') >= 0:
                array_SR = array.as_intensity_array()
                break
            if this_label.find('imean') >= 0:
                array_SR = array.as_intensity_array()
                break
            if this_label.find(work_params.scaling.mtz_column_F) == 0:
                array_SR = array.as_intensity_array()
                break

        if array_SR is None:
            known_labels = ['fobs', 'imean', work_params.scaling.mtz_column_F]
            raise Usage(work_params.scaling.mtz_file +
                        " does not contain any observations labelled [" +
                        ", ".join(known_labels) +
                        "].  Please set scaling.mtz_column_F to one of [" +
                        ",".join(obs_labels) + "].")
        elif not work_params.merge_anomalous and not array_SR.anomalous_flag():
            print("Warning: Preserving anomalous contributors, but %s " \
              "has anomalous contributors merged.  Generating identical Bijvoet " \
              "mates." % work_params.scaling.mtz_file, file=out)

    # Read Nat's reference model from an MTZ file.  XXX The observation
    # type is given as F, not I--should they be squared?  Check with Nat!
    print("I model", file=out)
    if work_params.model is not None:
        from xfel.merging.general_fcalc import run
        i_model = run(work_params)
        work_params.target_unit_cell = i_model.unit_cell()
        work_params.target_space_group = i_model.space_group_info()
        i_model.show_summary()
    else:
        i_model = None

    print("Target unit cell and space group:", file=out)
    print("  ", work_params.target_unit_cell, file=out)
    print("  ", work_params.target_space_group, file=out)

    miller_set, i_model = consistent_set_and_model(work_params, i_model)

    # ---- Augment this code with any special procedures for x scaling
    scaler = xscaling_manager(miller_set=miller_set,
                              i_model=i_model,
                              params=work_params,
                              log=out)
    scaler.scale_all()
    if scaler.n_accepted == 0:
        return None


# --- End of x scaling
    scaler.uc_values = unit_cell_distribution()
    for icell in range(len(scaler.frames["unit_cell"])):
        if scaler.params.model is None:
            scaler.uc_values.add_cell(
                unit_cell=scaler.frames["unit_cell"][icell])
        else:
            scaler.uc_values.add_cell(
                unit_cell=scaler.frames["unit_cell"][icell],
                rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr))

    scaler.show_unit_cell_histograms()
    if (work_params.rescale_with_average_cell):
        average_cell_abc = scaler.uc_values.get_average_cell_dimensions()
        average_cell = uctbx.unit_cell(
            list(average_cell_abc) +
            list(work_params.target_unit_cell.parameters()[3:]))
        work_params.target_unit_cell = average_cell
        print("", file=out)
        print("#" * 80, file=out)
        print("RESCALING WITH NEW TARGET CELL", file=out)
        print("  average cell: %g %g %g %g %g %g" % \
          work_params.target_unit_cell.parameters(), file=out)
        print("", file=out)
        scaler.reset()
        scaler = xscaling_manager(miller_set=miller_set,
                                  i_model=i_model,
                                  params=work_params,
                                  log=out)
        scaler.scale_all()
        scaler.uc_values = unit_cell_distribution()
        for icell in range(len(scaler.frames["unit_cell"])):
            if scaler.params.model is None:
                scaler.uc_values.add_cell(
                    unit_cell=scaler.frames["unit_cell"][icell])
            else:
                scaler.uc_values.add_cell(
                    unit_cell=scaler.frames["unit_cell"][icell],
                    rejected=(scaler.frames["cc"][icell] <
                              scaler.params.min_corr))
        scaler.show_unit_cell_histograms()
    if False:  #(work_params.output.show_plots) :
        try:
            plot_overall_completeness(completeness)
        except Exception as e:
            print("ERROR: can't show plots")
            print("  %s" % str(e))
    print("\n", file=out)

    reserve_prefix = work_params.output.prefix
    for data_subset in [1, 2, 0]:
        work_params.data_subset = data_subset
        work_params.output.prefix = "%s_s%1d_%s" % (
            reserve_prefix, data_subset, work_params.scaling.algorithm)

        if work_params.data_subset == 0:
            scaler.frames["data_subset"] = flex.bool(
                scaler.frames["frame_id"].size(), True)
        elif work_params.data_subset == 1:
            scaler.frames["data_subset"] = scaler.frames["odd_numbered"]
        elif work_params.data_subset == 2:
            scaler.frames["data_subset"] = scaler.frames[
                "odd_numbered"] == False

    # --------- New code ------------------
    #sanity check
        for mod, obs in zip(miller_set.indices(),
                            scaler.millers["merged_asu_hkl"]):
            if mod != obs:
                raise Exception(
                    "miller index lists inconsistent--check d_min are equal for merge and xmerge scripts"
                )
            assert mod == obs
        """Sum the observations of I and I/sig(I) for each reflection.
    sum_I = flex.double(i_model.size(), 0.)
    sum_I_SIGI = flex.double(i_model.size(), 0.)
    scaler.completeness = flex.int(i_model.size(), 0)
    scaler.summed_N = flex.int(i_model.size(), 0)
    scaler.summed_wt_I = flex.double(i_model.size(), 0.)
    scaler.summed_weight = flex.double(i_model.size(), 0.)
    scaler.n_rejected = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.n_obs = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.d_min_values = flex.double(scaler.frames["frame_id"].size(), 0.)
    scaler.ISIGI = {}"""

        from xfel import scaling_results, get_scaling_results, get_isigi_dict
        results = scaling_results(scaler._observations, scaler._frames,
                                  scaler.millers["merged_asu_hkl"],
                                  scaler.frames["data_subset"],
                                  work_params.include_negatives)
        results.__getattribute__(work_params.scaling.algorithm)(
            scaler.params.min_corr, scaler.params.target_unit_cell)

        sum_I, sum_I_SIGI, \
        scaler.completeness, scaler.summed_N, \
        scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, scaler.n_obs, \
        scaler.d_min_values, hkl_ids, i_sigi_list = get_scaling_results(results)

        scaler.ISIGI = get_isigi_dict(results)

        if work_params.merging.refine_G_Imodel:
            from xfel.cxi.merging.refine import find_scale

            my_find_scale = find_scale(scaler, work_params)

            sum_I, sum_I_SIGI, \
              scaler.completeness, scaler.summed_N, \
              scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, \
              scaler.n_obs, scaler.d_min_values, hkl_ids, i_sigi_list \
              = my_find_scale.get_scaling_results(results, scaler)
            scaler.ISIGI = get_isigi_dict(results)

        scaler.wavelength = scaler.frames["wavelength"]
        scaler.corr_values = scaler.frames["cc"]

        scaler.rejected_fractions = flex.double(
            scaler.frames["frame_id"].size(), 0.)
        for irej in range(len(scaler.rejected_fractions)):
            if scaler.n_obs[irej] > 0:
                scaler.rejected_fractions = scaler.n_rejected[
                    irej] / scaler.n_obs[irej]
    # ---------- End of new code ----------------

        if work_params.raw_data.sdfac_refine or work_params.raw_data.errors_from_sample_residuals:
            if work_params.raw_data.sdfac_refine:
                if work_params.raw_data.error_models.sdfac_refine.minimizer == 'simplex':
                    from xfel.merging.algorithms.error_model.sdfac_refine import sdfac_refine as error_modeler
                elif work_params.raw_data.error_models.sdfac_refine.minimizer == 'lbfgs':
                    from xfel.merging.algorithms.error_model.sdfac_refine_lbfgs import sdfac_refine_refltable_lbfgs as error_modeler
                elif self.params.raw_data.error_models.sdfac_refine.minimizer == 'LevMar':
                    from xfel.merging.algorithms.error_model.sdfac_refine_levmar import sdfac_refine_refltable_levmar as error_modeler

            if work_params.raw_data.errors_from_sample_residuals:
                from xfel.merging.algorithms.error_model.errors_from_residuals import errors_from_residuals as error_modeler

            error_modeler(scaler).adjust_errors()

        if work_params.raw_data.reduced_chi_squared_correction:
            from xfel.merging.algorithms.error_model.reduced_chi_squared import reduced_chi_squared
            reduced_chi_squared(scaler).compute()

        miller_set_avg = miller_set.customized_copy(
            unit_cell=work_params.target_unit_cell)

        table1 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.completeness,
            redundancy_to_edge=None,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for all reflections",
            out=out,
            work_params=work_params)
        if table1 is None:
            raise Exception("table could not be constructed")
        print("", file=out)
        if work_params.scaling.algorithm == 'mark0':
            n_refl, corr = scaler.get_overall_correlation(sum_I)
        else:
            n_refl, corr = ((scaler.completeness > 0).count(True), 0)
        print("\n", file=out)
        table2 = show_overall_observations(
            obs=miller_set_avg,
            redundancy=scaler.summed_N,
            redundancy_to_edge=None,
            summed_wt_I=scaler.summed_wt_I,
            summed_weight=scaler.summed_weight,
            ISIGI=scaler.ISIGI,
            n_bins=work_params.output.n_bins,
            title="Statistics for reflections where I > 0",
            out=out,
            work_params=work_params)
        if table2 is None:
            raise Exception("table could not be constructed")

        print("", file=out)
        mtz_file, miller_array = scaler.finalize_and_save_data()

        loggraph_file = os.path.abspath("%s_graphs.log" %
                                        work_params.output.prefix)
        f = open(loggraph_file, "w")
        f.write(table1.format_loggraph())
        f.write("\n")
        f.write(table2.format_loggraph())
        f.close()
        result = scaling_result(miller_array=miller_array,
                                plots=scaler.get_plot_statistics(),
                                mtz_file=mtz_file,
                                loggraph_file=loggraph_file,
                                obs_table=table1,
                                all_obs_table=table2,
                                n_reflections=n_refl,
                                overall_correlation=corr)
        easy_pickle.dump("%s.pkl" % work_params.output.prefix, result)
    work_params.output.prefix = reserve_prefix

    # Output table with number of images contribution reflections per
    # resolution bin.
    from libtbx import table_utils

    miller_set_avg.setup_binner(d_max=100000,
                                d_min=work_params.d_min,
                                n_bins=work_params.output.n_bins)
    table_data = [["Bin", "Resolution Range", "# images", "%accept"]]
    if work_params.model is None:
        appropriate_min_corr = -1.1  # lowest possible c.c.
    else:
        appropriate_min_corr = work_params.min_corr
    n_frames = (scaler.frames['cc'] > appropriate_min_corr).count(True)
    iselect = 1
    while iselect < work_params.output.n_bins:
        col_count1 = results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(iselect))
        print("colcount1", col_count1)
        if col_count1 > 0: break
        iselect += 1
    if col_count1 == 0: raise Exception("no reflections in any bins")
    for i_bin in miller_set_avg.binner().range_used():
        col_count = '%8d' % results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(i_bin))
        col_legend = '%-13s' % miller_set_avg.binner().bin_legend(
            i_bin=i_bin,
            show_bin_number=False,
            show_bin_range=False,
            show_d_range=True,
            show_counts=False)
        xpercent = results.count_frames(
            appropriate_min_corr,
            miller_set_avg.binner().selection(i_bin)) / float(n_frames)
        percent = '%5.2f' % (100. * xpercent)
        table_data.append(['%3d' % i_bin, col_legend, col_count, percent])

    table_data.append([""] * len(table_data[0]))
    table_data.append(["All", "", '%8d' % n_frames])
    print(file=out)
    print(table_utils.format(table_data,
                             has_header=1,
                             justify='center',
                             delim=' '),
          file=out)

    reindexing_ops = {
        "h,k,l": 0
    }  # get a list of all reindexing ops for this dataset
    if work_params.merging.reverse_lookup is not None:
        for key in scaler.reverse_lookup:
            if reindexing_ops.get(scaler.reverse_lookup[key], None) is None:
                reindexing_ops[scaler.reverse_lookup[key]] = 0
            reindexing_ops[scaler.reverse_lookup[key]] += 1

    from xfel.cxi.cxi_cc import run_cc
    for key in reindexing_ops.keys():
        run_cc(work_params, reindexing_op=key, output=out)

    if isinstance(scaler.ISIGI, dict):
        from xfel.merging import isigi_dict_to_reflection_table
        refls = isigi_dict_to_reflection_table(scaler.miller_set.indices(),
                                               scaler.ISIGI)
    else:
        refls = scaler.ISIGI
    easy_pickle.dump("%s.refl" % work_params.output.prefix, refls)

    return result
예제 #6
0
                outfile = "%s_s%1d_levmar.mtz" % (tag, half_data_flag)
                output_result.show_summary(prefix="%s: " % outfile)
                mtz_out = output_result.as_mtz_dataset(
                    column_root_label="Iobs", title=outfile, wavelength=None)
                mtz_obj = mtz_out.mtz_object()
                mtz_obj.write(outfile)
                written_files.append(outfile)
                print "OK"
                #raw_input("OK")
                sys.stdout.flush()

            from xfel.command_line.cxi_merge import master_phil
            import iotbx.phil
            args = [
                "output.prefix=%s" % tag, "scaling.algorithm=levmar",
                "d_min=%f" % (case.d_min),
                "output.n_bins=%d" % (case.n_bins),
                "model=%s" % (os.path.join(datadir, "not_used.pdb")),
                "mtz_file=%s" % ("rigged_filename.mtz"), "mtz_column_F=iobs",
                "merge_anomalous=True", "scaling.show_plots=False",
                "log_cutoff=-20"
            ]
            phil = iotbx.phil.process_command_line(
                args=args, master_string=master_phil)  # .show()
            work_params = phil.work.extract()
            from xfel.merging.phil_validation import application
            application(work_params)
            get_model_intensities(work_params, case.ordered_intensities)
            from xfel.cxi.cxi_cc import run_cc
            run_cc(work_params, "h,k,l", sys.stdout)
예제 #7
0
               plot=plot_flag, esd_plot = esd_plot_flag,half_data_flag = half_data_flag)
        model_subset = case.ordered_intensities[0:len(case.Fit_I)]
        from cctbx.xray import observation_types
        fitted_miller_array = model_subset.customized_copy(data = case.Fit_I, sigmas = case.Fit_I_stddev,
          observation_type=observation_types.intensity())
        output_result = fitted_miller_array.select(case.I_visited==1)
        outfile = "%s_s%1d_levmar.mtz"%(tag,half_data_flag)
        output_result.show_summary(prefix="%s: "%outfile)
        mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None)
        mtz_obj = mtz_out.mtz_object()
        mtz_obj.write(outfile)
        written_files.append(outfile)
        print "OK"
        #raw_input("OK")
        sys.stdout.flush()

      from xfel.command_line.cxi_merge import master_phil
      import iotbx.phil
      args = ["output.prefix=%s"%tag,"scaling.algorithm=levmar",
              "d_min=%f"%(case.d_min),"output.n_bins=%d"%(case.n_bins),"model=%s"%(os.path.join(datadir,"not_used.pdb")),
              "mtz_file=%s"%("rigged_filename.mtz"),
              "mtz_column_F=iobs",
              "merge_anomalous=True","scaling.show_plots=False","log_cutoff=-20"]
      phil = iotbx.phil.process_command_line(args=args, master_string=master_phil)# .show()
      work_params = phil.work.extract()
      from xfel.merging.phil_validation import application
      application(work_params)
      get_model_intensities(work_params,case.ordered_intensities)
      from xfel.cxi.cxi_cc import run_cc
      run_cc(work_params,"h,k,l",sys.stdout)