def run(show_plots,args): from xfel.command_line.cxi_merge import master_phil phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show() work_params = phil.work.extract() from xfel.merging.phil_validation import application,samosa application(work_params) samosa(work_params) if ("--help" in args) : libtbx.phil.parse(master_phil.show()) return datadir = "." written_files = [] if work_params.levmar.compute_cc_half: for half_data_flag in [1,2,0]: case = execute_case(datadir, work_params, plot=show_plots, half_data_flag=half_data_flag) assert len(case.Fit_I)==len(case.ordered_intensities.indices())==len(case.reference_millers.indices()) model_subset = case.reference_millers[0:len(case.Fit_I)] fitted_miller_array = miller.array (miller_set = model_subset, data = case.Fit_I, sigmas = case.Fit_I_stddev) fitted_miller_array.set_observation_type_xray_intensity() output_result = fitted_miller_array.select(case.I_visited==1) outfile = "%s_s%1d_levmar.mtz"%(work_params.output.prefix,half_data_flag) output_result.show_summary(prefix="%s: "%outfile) mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None) mtz_obj = mtz_out.mtz_object() mtz_obj.write(outfile) written_files.append(outfile) print "OK s%1d"%half_data_flag #raw_input("OK?") """Guest code to retrieve the modified orientations after rotational fitting is done""" if "Rxy" in work_params.levmar.parameter_flags: all_A = [e.crystal.get_A() for e in case.experiments.get_experiments()] all_files = case.experiments.get_files() all_x = case.Fit["Ax"] all_y = case.Fit["Ay"] from scitbx import matrix x_axis = matrix.col((1.,0.,0.)) y_axis = matrix.col((0.,1.,0.)) out = open("aaaaa","w") for x in xrange(len(all_A)): Rx = x_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_x[x], deg=True) Ry = y_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_y[x], deg=True) modified_A = Rx * Ry * all_A[x] filename = all_files[x] print >>out, filename, " ".join([str(a) for a in modified_A.elems]) work_params.scaling.algorithm="levmar" from xfel.cxi.cxi_cc import run_cc run_cc(work_params,work_params.model_reindex_op,sys.stdout) else: execute_case(datadir, work_params, plot=show_plots)
def run(show_plots,args): from xfel.command_line.cxi_merge import master_phil phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show() work_params = phil.work.extract() from xfel.merging.phil_validation import application,samosa application(work_params) samosa(work_params) if ("--help" in args) : libtbx.phil.parse(master_phil.show()) return datadir = "." written_files = [] if work_params.levmar.compute_cc_half: for half_data_flag in [1,2,0]: case = execute_case(datadir, work_params, plot=show_plots, half_data_flag=half_data_flag) assert len(case.Fit_I)==len(case.ordered_intensities.indices())==len(case.reference_millers.indices()) model_subset = case.reference_millers[0:len(case.Fit_I)] fitted_miller_array = miller.array (miller_set = model_subset, data = case.Fit_I, sigmas = case.Fit_I_stddev) fitted_miller_array.set_observation_type_xray_intensity() output_result = fitted_miller_array.select(case.I_visited==1) outfile = "%s_s%1d_levmar.mtz"%(work_params.output.prefix,half_data_flag) output_result.show_summary(prefix="%s: "%outfile) mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None) mtz_obj = mtz_out.mtz_object() mtz_obj.write(outfile) written_files.append(outfile) print "OK s%1d"%half_data_flag #raw_input("OK?") """Guest code to retrieve the modified orientations after rotational fitting is done""" if "Rxy" in work_params.levmar.parameter_flags: all_A = [e.crystal.get_A() for e in case.experiments.get_experiments()] all_files = case.experiments.get_files() all_x = case.Fit["Ax"] all_y = case.Fit["Ay"] from scitbx import matrix x_axis = matrix.col((1.,0.,0.)) y_axis = matrix.col((0.,1.,0.)) out = open("aaaaa","w") for x in xrange(len(all_A)): Rx = x_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_x[x], deg=True) Ry = y_axis.axis_and_angle_as_r3_rotation_matrix(angle=all_y[x], deg=True) modified_A = Rx * Ry * all_A[x] filename = all_files[x] print >>out, filename, " ".join([str(a) for a in modified_A.elems]) work_params.scaling.algorithm="levmar" from xfel.cxi.cxi_cc import run_cc run_cc(work_params,work_params.model_reindex_op,sys.stdout)
table_data.append([""] * len(table_data[0])) table_data.append(["All", "", '%8d' % n_frames]) print >> out print >> out, table_utils.format( table_data, has_header=1, justify='center', delim=' ') reindexing_ops = {"h,k,l":0} # get a list of all reindexing ops for this dataset if work_params.merging.reverse_lookup is not None: for key in scaler.reverse_lookup: if reindexing_ops.get(scaler.reverse_lookup[key], None) is None: reindexing_ops[scaler.reverse_lookup[key]]=0 reindexing_ops[scaler.reverse_lookup[key]]+=1 from xfel.cxi.cxi_cc import run_cc for key in reindexing_ops.keys(): run_cc(work_params,reindexing_op=key,output=out) return result if (__name__ == "__main__"): show_plots = False if ("--plots" in sys.argv) : sys.argv.remove("--plots") show_plots = True result = run(args=sys.argv[1:]) if result is None: sys.exit(1) if (show_plots) : try : result.plots.show_all_pyplot() from wxtbx.command_line import loggraph
has_header=1, justify='center', delim=' ') reindexing_ops = { "h,k,l": 0 } # get a list of all reindexing ops for this dataset if work_params.merging.reverse_lookup is not None: for key in scaler.reverse_lookup: if reindexing_ops.get(scaler.reverse_lookup[key], None) is None: reindexing_ops[scaler.reverse_lookup[key]] = 0 reindexing_ops[scaler.reverse_lookup[key]] += 1 from xfel.cxi.cxi_cc import run_cc for key in reindexing_ops.keys(): run_cc(work_params, reindexing_op=key, output=out) return result if (__name__ == "__main__"): show_plots = False if ("--plots" in sys.argv): sys.argv.remove("--plots") show_plots = True result = run(args=sys.argv[1:]) if result is None: sys.exit(1) if (show_plots): try: result.plots.show_all_pyplot() from wxtbx.command_line import loggraph
def run(args): phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show() work_params = phil.work.extract() from xfel.merging.phil_validation import application application(work_params) if ("--help" in args): libtbx.phil.parse(master_phil.show()) return if ((work_params.d_min is None) or (work_params.data is None) or ((work_params.model is None) and work_params.scaling.algorithm != "mark1")): raise Usage("cxi.merge " "d_min=4.0 " "data=~/scratch/r0220/006/strong/ " "model=3bz1_3bz2_core.pdb") if ((work_params.rescale_with_average_cell) and (not work_params.set_average_unit_cell)): raise Usage( "If rescale_with_average_cell=True, you must also specify " + "set_average_unit_cell=True.") if work_params.raw_data.sdfac_auto and work_params.raw_data.sdfac_refine: raise Usage("Cannot specify both sdfac_auto and sdfac_refine") if not work_params.include_negatives_fix_27May2018: work_params.include_negatives = False # use old behavior log = open( "%s_%s.log" % (work_params.output.prefix, work_params.scaling.algorithm), "w") out = multi_out() out.register("log", log, atexit_send_to=None) out.register("stdout", sys.stdout) # Verify that the externally supplied isomorphous reference, if # present, defines a suitable column of intensities, and exit with # error if it does not. Then warn if it is necessary to generate # Bijvoet mates. Failure to catch these issues here would lead to # possibly obscure problems in cxi/cxi_cc.py later on. try: data_SR = mtz.object(work_params.scaling.mtz_file) except RuntimeError: pass else: array_SR = None obs_labels = [] for array in data_SR.as_miller_arrays(): this_label = array.info().label_string().lower() if array.observation_type() is not None: obs_labels.append(this_label.split(',')[0]) if this_label.find('fobs') >= 0: array_SR = array.as_intensity_array() break if this_label.find('imean') >= 0: array_SR = array.as_intensity_array() break if this_label.find(work_params.scaling.mtz_column_F) == 0: array_SR = array.as_intensity_array() break if array_SR is None: known_labels = ['fobs', 'imean', work_params.scaling.mtz_column_F] raise Usage(work_params.scaling.mtz_file + " does not contain any observations labelled [" + ", ".join(known_labels) + "]. Please set scaling.mtz_column_F to one of [" + ",".join(obs_labels) + "].") elif not work_params.merge_anomalous and not array_SR.anomalous_flag(): print("Warning: Preserving anomalous contributors, but %s " \ "has anomalous contributors merged. Generating identical Bijvoet " \ "mates." % work_params.scaling.mtz_file, file=out) # Read Nat's reference model from an MTZ file. XXX The observation # type is given as F, not I--should they be squared? Check with Nat! print("I model", file=out) if work_params.model is not None: from xfel.merging.general_fcalc import run i_model = run(work_params) work_params.target_unit_cell = i_model.unit_cell() work_params.target_space_group = i_model.space_group_info() i_model.show_summary() else: i_model = None print("Target unit cell and space group:", file=out) print(" ", work_params.target_unit_cell, file=out) print(" ", work_params.target_space_group, file=out) miller_set, i_model = consistent_set_and_model(work_params, i_model) # ---- Augment this code with any special procedures for x scaling scaler = xscaling_manager(miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() if scaler.n_accepted == 0: return None # --- End of x scaling scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if (work_params.rescale_with_average_cell): average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell( list(average_cell_abc) + list(work_params.target_unit_cell.parameters()[3:])) work_params.target_unit_cell = average_cell print("", file=out) print("#" * 80, file=out) print("RESCALING WITH NEW TARGET CELL", file=out) print(" average cell: %g %g %g %g %g %g" % \ work_params.target_unit_cell.parameters(), file=out) print("", file=out) scaler.reset() scaler = xscaling_manager(miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if False: #(work_params.output.show_plots) : try: plot_overall_completeness(completeness) except Exception as e: print("ERROR: can't show plots") print(" %s" % str(e)) print("\n", file=out) reserve_prefix = work_params.output.prefix for data_subset in [1, 2, 0]: work_params.data_subset = data_subset work_params.output.prefix = "%s_s%1d_%s" % ( reserve_prefix, data_subset, work_params.scaling.algorithm) if work_params.data_subset == 0: scaler.frames["data_subset"] = flex.bool( scaler.frames["frame_id"].size(), True) elif work_params.data_subset == 1: scaler.frames["data_subset"] = scaler.frames["odd_numbered"] elif work_params.data_subset == 2: scaler.frames["data_subset"] = scaler.frames[ "odd_numbered"] == False # --------- New code ------------------ #sanity check for mod, obs in zip(miller_set.indices(), scaler.millers["merged_asu_hkl"]): if mod != obs: raise Exception( "miller index lists inconsistent--check d_min are equal for merge and xmerge scripts" ) assert mod == obs """Sum the observations of I and I/sig(I) for each reflection. sum_I = flex.double(i_model.size(), 0.) sum_I_SIGI = flex.double(i_model.size(), 0.) scaler.completeness = flex.int(i_model.size(), 0) scaler.summed_N = flex.int(i_model.size(), 0) scaler.summed_wt_I = flex.double(i_model.size(), 0.) scaler.summed_weight = flex.double(i_model.size(), 0.) scaler.n_rejected = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.n_obs = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.d_min_values = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.ISIGI = {}""" from xfel import scaling_results, get_scaling_results, get_isigi_dict results = scaling_results(scaler._observations, scaler._frames, scaler.millers["merged_asu_hkl"], scaler.frames["data_subset"], work_params.include_negatives) results.__getattribute__(work_params.scaling.algorithm)( scaler.params.min_corr, scaler.params.target_unit_cell) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, scaler.n_obs, \ scaler.d_min_values, hkl_ids, i_sigi_list = get_scaling_results(results) scaler.ISIGI = get_isigi_dict(results) if work_params.merging.refine_G_Imodel: from xfel.cxi.merging.refine import find_scale my_find_scale = find_scale(scaler, work_params) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, \ scaler.n_obs, scaler.d_min_values, hkl_ids, i_sigi_list \ = my_find_scale.get_scaling_results(results, scaler) scaler.ISIGI = get_isigi_dict(results) scaler.wavelength = scaler.frames["wavelength"] scaler.corr_values = scaler.frames["cc"] scaler.rejected_fractions = flex.double( scaler.frames["frame_id"].size(), 0.) for irej in range(len(scaler.rejected_fractions)): if scaler.n_obs[irej] > 0: scaler.rejected_fractions = scaler.n_rejected[ irej] / scaler.n_obs[irej] # ---------- End of new code ---------------- if work_params.raw_data.sdfac_refine or work_params.raw_data.errors_from_sample_residuals: if work_params.raw_data.sdfac_refine: if work_params.raw_data.error_models.sdfac_refine.minimizer == 'simplex': from xfel.merging.algorithms.error_model.sdfac_refine import sdfac_refine as error_modeler elif work_params.raw_data.error_models.sdfac_refine.minimizer == 'lbfgs': from xfel.merging.algorithms.error_model.sdfac_refine_lbfgs import sdfac_refine_refltable_lbfgs as error_modeler elif self.params.raw_data.error_models.sdfac_refine.minimizer == 'LevMar': from xfel.merging.algorithms.error_model.sdfac_refine_levmar import sdfac_refine_refltable_levmar as error_modeler if work_params.raw_data.errors_from_sample_residuals: from xfel.merging.algorithms.error_model.errors_from_residuals import errors_from_residuals as error_modeler error_modeler(scaler).adjust_errors() if work_params.raw_data.reduced_chi_squared_correction: from xfel.merging.algorithms.error_model.reduced_chi_squared import reduced_chi_squared reduced_chi_squared(scaler).compute() miller_set_avg = miller_set.customized_copy( unit_cell=work_params.target_unit_cell) table1 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for all reflections", out=out, work_params=work_params) if table1 is None: raise Exception("table could not be constructed") print("", file=out) if work_params.scaling.algorithm == 'mark0': n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print("\n", file=out) table2 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for reflections where I > 0", out=out, work_params=work_params) if table2 is None: raise Exception("table could not be constructed") print("", file=out) mtz_file, miller_array = scaler.finalize_and_save_data() loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result(miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) work_params.output.prefix = reserve_prefix # Output table with number of images contribution reflections per # resolution bin. from libtbx import table_utils miller_set_avg.setup_binner(d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins) table_data = [["Bin", "Resolution Range", "# images", "%accept"]] if work_params.model is None: appropriate_min_corr = -1.1 # lowest possible c.c. else: appropriate_min_corr = work_params.min_corr n_frames = (scaler.frames['cc'] > appropriate_min_corr).count(True) iselect = 1 while iselect < work_params.output.n_bins: col_count1 = results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(iselect)) print("colcount1", col_count1) if col_count1 > 0: break iselect += 1 if col_count1 == 0: raise Exception("no reflections in any bins") for i_bin in miller_set_avg.binner().range_used(): col_count = '%8d' % results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(i_bin)) col_legend = '%-13s' % miller_set_avg.binner().bin_legend( i_bin=i_bin, show_bin_number=False, show_bin_range=False, show_d_range=True, show_counts=False) xpercent = results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(i_bin)) / float(n_frames) percent = '%5.2f' % (100. * xpercent) table_data.append(['%3d' % i_bin, col_legend, col_count, percent]) table_data.append([""] * len(table_data[0])) table_data.append(["All", "", '%8d' % n_frames]) print(file=out) print(table_utils.format(table_data, has_header=1, justify='center', delim=' '), file=out) reindexing_ops = { "h,k,l": 0 } # get a list of all reindexing ops for this dataset if work_params.merging.reverse_lookup is not None: for key in scaler.reverse_lookup: if reindexing_ops.get(scaler.reverse_lookup[key], None) is None: reindexing_ops[scaler.reverse_lookup[key]] = 0 reindexing_ops[scaler.reverse_lookup[key]] += 1 from xfel.cxi.cxi_cc import run_cc for key in reindexing_ops.keys(): run_cc(work_params, reindexing_op=key, output=out) if isinstance(scaler.ISIGI, dict): from xfel.merging import isigi_dict_to_reflection_table refls = isigi_dict_to_reflection_table(scaler.miller_set.indices(), scaler.ISIGI) else: refls = scaler.ISIGI easy_pickle.dump("%s.refl" % work_params.output.prefix, refls) return result
outfile = "%s_s%1d_levmar.mtz" % (tag, half_data_flag) output_result.show_summary(prefix="%s: " % outfile) mtz_out = output_result.as_mtz_dataset( column_root_label="Iobs", title=outfile, wavelength=None) mtz_obj = mtz_out.mtz_object() mtz_obj.write(outfile) written_files.append(outfile) print "OK" #raw_input("OK") sys.stdout.flush() from xfel.command_line.cxi_merge import master_phil import iotbx.phil args = [ "output.prefix=%s" % tag, "scaling.algorithm=levmar", "d_min=%f" % (case.d_min), "output.n_bins=%d" % (case.n_bins), "model=%s" % (os.path.join(datadir, "not_used.pdb")), "mtz_file=%s" % ("rigged_filename.mtz"), "mtz_column_F=iobs", "merge_anomalous=True", "scaling.show_plots=False", "log_cutoff=-20" ] phil = iotbx.phil.process_command_line( args=args, master_string=master_phil) # .show() work_params = phil.work.extract() from xfel.merging.phil_validation import application application(work_params) get_model_intensities(work_params, case.ordered_intensities) from xfel.cxi.cxi_cc import run_cc run_cc(work_params, "h,k,l", sys.stdout)
plot=plot_flag, esd_plot = esd_plot_flag,half_data_flag = half_data_flag) model_subset = case.ordered_intensities[0:len(case.Fit_I)] from cctbx.xray import observation_types fitted_miller_array = model_subset.customized_copy(data = case.Fit_I, sigmas = case.Fit_I_stddev, observation_type=observation_types.intensity()) output_result = fitted_miller_array.select(case.I_visited==1) outfile = "%s_s%1d_levmar.mtz"%(tag,half_data_flag) output_result.show_summary(prefix="%s: "%outfile) mtz_out = output_result.as_mtz_dataset(column_root_label="Iobs",title=outfile,wavelength=None) mtz_obj = mtz_out.mtz_object() mtz_obj.write(outfile) written_files.append(outfile) print "OK" #raw_input("OK") sys.stdout.flush() from xfel.command_line.cxi_merge import master_phil import iotbx.phil args = ["output.prefix=%s"%tag,"scaling.algorithm=levmar", "d_min=%f"%(case.d_min),"output.n_bins=%d"%(case.n_bins),"model=%s"%(os.path.join(datadir,"not_used.pdb")), "mtz_file=%s"%("rigged_filename.mtz"), "mtz_column_F=iobs", "merge_anomalous=True","scaling.show_plots=False","log_cutoff=-20"] phil = iotbx.phil.process_command_line(args=args, master_string=master_phil)# .show() work_params = phil.work.extract() from xfel.merging.phil_validation import application application(work_params) get_model_intensities(work_params,case.ordered_intensities) from xfel.cxi.cxi_cc import run_cc run_cc(work_params,"h,k,l",sys.stdout)