def get_results(X): categoricals = X.select_dtypes(include='object') categoricals = categoricals.astype(str) categoricals = categoricals.apply(label.fit_transform) label_encoding = categoricals['country'] categoricals.drop(['country'], axis=1, inplace=True) X_one = enc.transform(categoricals) encoded_data = pd.DataFrame(X_one.todense()) encoded_data.reset_index(drop=True, inplace=True) categoricals.reset_index(drop=True, inplace=True) original_numeric = X.select_dtypes(include='number') original_numeric.reset_index(drop=True, inplace=True) X = pd.concat([original_numeric, encoded_data, label_encoding], axis=1).values Xp = pca.transform(X) clf = XGBClassifier() booster = Booster() booster.load_model('xgb.model') clf._Booster = booster classes = clf.predict_proba(Xp) y_pred = [0 if c[0] > 0.5 else 1 for c in classes] return y_pred
def analyze(self, event): array_list = [ "lepJet_llpdnnx_-1_isLLP_QMU_QQMU", "lepJet_llpdnnx_0_isLLP_QMU_QQMU", "lepJet_llpdnnx_1_isLLP_QMU_QQMU", "lepJet_llpdnnx_2_isLLP_QMU_QQMU", "dimuon_mass", "dimuon_deltaR", "lepJet_pt", "lepJet_eta", "lepJet_deltaR", "MET_pt", "MET_phi", "looseMuons_pt", "looseMuons_eta", "looseMuons_dxy", "tightMuons_pt", "tightMuons_eta", "tightMuons_dxy" ] data = pd.DataFrame(data={ "lepJet_llpdnnx_-1_isLLP_QMU_QQMU": getattr(event, "lepJet_llpdnnx_-1_isLLP_QMU_QQMU"), "lepJet_llpdnnx_0_isLLP_QMU_QQMU": event.lepJet_llpdnnx_0_isLLP_QMU_QQMU, "lepJet_llpdnnx_1_isLLP_QMU_QQMU": event.lepJet_llpdnnx_1_isLLP_QMU_QQMU, "lepJet_llpdnnx_2_isLLP_QMU_QQMU": event.lepJet_llpdnnx_2_isLLP_QMU_QQMU, "dimuon_mass": event.dimuon_mass, "dimuon_deltaR": event.dimuon_deltaR, "lepJet_pt": event.lepJet_pt, "lepJet_eta": event.lepJet_eta, "lepJet_deltaR": event.lepJet_deltaR, "MET_pt": event.MET_pt, "MET_phi": event.MET_phi, "looseMuons_pt": event.looseMuons_pt, "looseMuons_eta": event.looseMuons_eta, "looseMuons_dxy": event.looseMuons_dxy, "tightMuons_pt": event.tightMuons_pt, "tightMuons_eta": event.tightMuons_eta, "tightMuons_dxy": event.tightMuons_dxy, }, columns=array_list, index=[0]) model = XGBClassifier() booster = Booster() #model._le = LabelEncoder().fit([1]) booster.load_model(self.modelPath) booster.feature_names = array_list model._Booster = booster bdt_score = model.predict_proba(data) setattr(event, "bdt_score", bdt_score[:, 1]) return True
from xgboost import XGBClassifier, Booster model = XGBClassifier() booster = Booster() booster.load_model('model.pkl') model._Booster = booster print(model.predict([[0, 0, 0, 0, 0, 00]]))
def load_model(model_path): clf = XGBClassifier() booster = Booster() booster.load_model(model_path) clf._Booster = booster return clf
from sklearn.preprocessing import LabelEncoder from process_data import process_input # For logging import logging import traceback from logging.handlers import RotatingFileHandler from time import strftime, time app = Flask(__name__) xgb_ClaimInd_model = XGBClassifier() booster = xgb.Booster() booster.load_model('models/xgb_ClaimInd_model') xgb_ClaimInd_model._Booster = booster xgb_ClaimInd_model._le = LabelEncoder().fit([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # Logging handler = RotatingFileHandler('app.log', maxBytes=100000, backupCount=5) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logger.addHandler(handler) @app.route("/") def index(): return "RenataTNT API"