예제 #1
0
파일: MatrixExpert.py 프로젝트: hainm/xia2
def mosflm_matrix_centred_to_primitive(lattice, mosflm_a_matrix):
  '''Convert a mosflm orientation matrix from a centred setting to a
  primitive one (i.e. same lattice, but without the centering operations,
  which therefore corresponds to a different basis).'''

  space_group_number = l2s(lattice)
  spacegroup = sgtbx.space_group_symbols(space_group_number).hall()
  sg = sgtbx.space_group(spacegroup)

  rtod = 180.0 / math.pi

  if not (sg.n_ltr() - 1):
    return mosflm_a_matrix

  cell, amat, umat = parse_matrix(mosflm_a_matrix)

  # first derive the wavelength

  mi = matrix.sqr(amat)
  m = mi.inverse()

  A = matrix.col(m.elems[0:3])
  B = matrix.col(m.elems[3:6])
  C = matrix.col(m.elems[6:9])

  a = math.sqrt(A.dot())
  b = math.sqrt(B.dot())
  c = math.sqrt(C.dot())

  alpha = rtod * B.angle(C)
  beta = rtod * C.angle(A)
  gamma = rtod * A.angle(B)

  wavelength = ((cell[0] / a) + (cell[1] / b) + (cell[2] / c)) / 3.0

  # then use this to rescale the A matrix

  mi = matrix.sqr([a / wavelength for a in amat])
  m = mi.inverse()

  sgp = sg.build_derived_group(True, False)
  lattice_p = s2l(sgp.type().number())
  symm = crystal.symmetry(unit_cell = cell,
                          space_group = sgp)

  rdx = symm.change_of_basis_op_to_best_cell()
  symm_new = symm.change_basis(rdx)

  # now apply this to the reciprocal-space orientation matrix mi

  cb_op = rdx
  R = cb_op.c_inv().r().as_rational().as_float().transpose().inverse()
  mi_r = mi * R

  # now re-derive the cell constants, just to be sure

  m_r = mi_r.inverse()
  Ar = matrix.col(m_r.elems[0:3])
  Br = matrix.col(m_r.elems[3:6])
  Cr = matrix.col(m_r.elems[6:9])

  a = math.sqrt(Ar.dot())
  b = math.sqrt(Br.dot())
  c = math.sqrt(Cr.dot())

  alpha = rtod * Br.angle(Cr)
  beta = rtod * Cr.angle(Ar)
  gamma = rtod * Ar.angle(Br)

  cell = uctbx.unit_cell((a, b, c, alpha, beta, gamma))

  amat = [wavelength * e for e in mi_r.elems]
  bmat = matrix.sqr(cell.fractionalization_matrix())
  umat = mi_r * bmat.inverse()

  new_matrix = ['%s\n' % r for r in \
                format_matrix((a, b, c, alpha, beta, gamma),
                              amat, umat.elems).split('\n')]

  return new_matrix
def mosflm_check_indexer_solution(indexer):

    distance = indexer.get_indexer_distance()
    axis = matrix.col([0, 0, 1])
    beam = indexer.get_indexer_beam_centre()
    cell = indexer.get_indexer_cell()
    wavelength = indexer.get_wavelength()

    space_group_number = l2s(indexer.get_indexer_lattice())
    spacegroup = sgtbx.space_group_symbols(space_group_number).hall()
    phi = indexer.get_header()['phi_width']

    sg = sgtbx.space_group(spacegroup)

    if not (sg.n_ltr() - 1):
        # primitive solution - just return ... something
        return None, None, None, None

    # FIXME need to raise an exception if this is not available!
    m_matrix = indexer.get_indexer_payload('mosflm_orientation_matrix')

    # N.B. in the calculation below I am using the Cambridge frame
    # and Mosflm definitions of X & Y...

    m_elems = []

    for record in m_matrix[:3]:
        record = record.replace('-', ' -')
        for e in map(float, record.split()):
            m_elems.append(e / wavelength)

    mi = matrix.sqr(m_elems)
    m = mi.inverse()

    A = matrix.col(m.elems[0:3])
    B = matrix.col(m.elems[3:6])
    C = matrix.col(m.elems[6:9])

    # now select the images - start with the images that the indexer
    # used for indexing, though can interrogate the FrameProcessor
    # interface of the indexer to put together a completely different
    # list if I like...

    images = []

    for i in indexer.get_indexer_images():
        for j in i:
            if not j in images:
                images.append(j)

    images.sort()

    # now construct the reciprocal-space peak list n.b. should
    # really run this in parallel...

    spots_r = []

    spots_r_j = {}

    for i in images:
        image = indexer.get_image_name(i)
        dd = Diffdump()
        dd.set_image(image)
        header = dd.readheader()
        phi = header['phi_start'] + 0.5 * header['phi_width']
        pixel = header['pixel']
        wavelength = header['wavelength']
        peaks = locate_maxima(image)

        spots_r_j[i] = []

        for p in peaks:
            x, y, isigma = p

            if isigma < 5.0:
                continue

            xp = pixel[0] * y - beam[0]
            yp = pixel[1] * x - beam[1]

            scale = wavelength * math.sqrt(xp * xp + yp * yp +
                                           distance * distance)

            X = distance / scale
            X -= 1.0 / wavelength
            Y = -xp / scale
            Z = yp / scale

            S = matrix.col([X, Y, Z])

            rtod = 180.0 / math.pi

            spots_r.append(S.rotate(axis, -phi / rtod))
            spots_r_j[i].append(S.rotate(axis, -phi / rtod))

    # now reindex the reciprocal space spot list and count - n.b. need
    # to transform the Bravais lattice to an assumed spacegroup and hence
    # to a cctbx spacegroup!

    # lists = [spots_r_j[j] for j in spots_r_j]
    lists = []
    lists.append(spots_r)

    for l in lists:

        absent = 0
        present = 0
        total = 0

        for spot in l:
            hkl = (m * spot).elems

            total += 1

            ihkl = map(nint, hkl)

            if math.fabs(hkl[0] - ihkl[0]) > 0.1:
                continue

            if math.fabs(hkl[1] - ihkl[1]) > 0.1:
                continue

            if math.fabs(hkl[2] - ihkl[2]) > 0.1:
                continue

            # now determine if it is absent

            if sg.is_sys_absent(ihkl):
                absent += 1
            else:
                present += 1

        # now perform the analysis on these numbers...

        sd = math.sqrt(absent)

        if total:

            Debug.write('Counts: %d %d %d %.3f' % \
                        (total, present, absent, (absent - 3 * sd) / total))

        else:

            Debug.write('Not enough spots found for analysis')
            return False, None, None, None

        if (absent - 3 * sd) / total < 0.008:
            return False, None, None, None

    # in here need to calculate the new orientation matrix for the
    # primitive basis and reconfigure the indexer - somehow...

    # ok, so the bases are fine, but what I will want to do is reorder them
    # to give the best primitive choice of unit cell...

    sgp = sg.build_derived_group(True, False)
    lattice_p = s2l(sgp.type().number())
    symm = crystal.symmetry(unit_cell=cell, space_group=sgp)

    rdx = symm.change_of_basis_op_to_best_cell()
    symm_new = symm.change_basis(rdx)

    # now apply this to the reciprocal-space orientation matrix mi

    # cb_op = sgtbx.change_of_basis_op(rdx)
    cb_op = rdx
    R = cb_op.c_inv().r().as_rational().as_float().transpose().inverse()
    mi_r = mi * R

    # now re-derive the cell constants, just to be sure

    m_r = mi_r.inverse()
    Ar = matrix.col(m_r.elems[0:3])
    Br = matrix.col(m_r.elems[3:6])
    Cr = matrix.col(m_r.elems[6:9])

    a = math.sqrt(Ar.dot())
    b = math.sqrt(Br.dot())
    c = math.sqrt(Cr.dot())

    rtod = 180.0 / math.pi

    alpha = rtod * Br.angle(Cr)
    beta = rtod * Cr.angle(Ar)
    gamma = rtod * Ar.angle(Br)

    # print '%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f' % \
    # (a, b, c, alpha, beta, gamma)

    cell = uctbx.unit_cell((a, b, c, alpha, beta, gamma))

    amat = [wavelength * e for e in mi_r.elems]
    bmat = matrix.sqr(cell.fractionalization_matrix())
    umat = mi_r * bmat.inverse()

    # yuk! surely I don't need to do this...

    # I do need to do this, and don't call me shirley!

    new_matrix = ['%s\n' % r for r in \
                  format_matrix((a, b, c, alpha, beta, gamma),
                                amat, umat.elems).split('\n')]

    # ok - this gives back the right matrix in the right setting - excellent!
    # now need to apply this back at base to the results of the indexer.

    # N.B. same should be applied to the same calculations for the XDS
    # version of this.

    return True, lattice_p, new_matrix, (a, b, c, alpha, beta, gamma)
예제 #3
0
def mosflm_check_indexer_solution(indexer):

  distance = indexer.get_indexer_distance()
  axis = matrix.col([0, 0, 1])
  beam = indexer.get_indexer_beam_centre()
  cell = indexer.get_indexer_cell()
  wavelength = indexer.get_wavelength()

  space_group_number = l2s(indexer.get_indexer_lattice())
  spacegroup = sgtbx.space_group_symbols(space_group_number).hall()
  phi = indexer.get_header()['phi_width']

  sg = sgtbx.space_group(spacegroup)

  if not (sg.n_ltr() - 1):
    # primitive solution - just return ... something
    return None, None, None, None

  # FIXME need to raise an exception if this is not available!
  m_matrix = indexer.get_indexer_payload('mosflm_orientation_matrix')

  # N.B. in the calculation below I am using the Cambridge frame
  # and Mosflm definitions of X & Y...

  m_elems = []

  for record in m_matrix[:3]:
    record = record.replace('-', ' -')
    for e in map(float, record.split()):
      m_elems.append(e / wavelength)

  mi = matrix.sqr(m_elems)
  m = mi.inverse()

  A = matrix.col(m.elems[0:3])
  B = matrix.col(m.elems[3:6])
  C = matrix.col(m.elems[6:9])

  # now select the images - start with the images that the indexer
  # used for indexing, though can interrogate the FrameProcessor
  # interface of the indexer to put together a completely different
  # list if I like...

  images = []

  for i in indexer.get_indexer_images():
    for j in i:
      if not j in images:
        images.append(j)

  images.sort()

  # now construct the reciprocal-space peak list n.b. should
  # really run this in parallel...

  spots_r = []

  spots_r_j =  { }

  for i in images:
    image = indexer.get_image_name(i)
    dd = Diffdump()
    dd.set_image(image)
    header = dd.readheader()
    phi = header['phi_start'] + 0.5 * header['phi_width']
    pixel = header['pixel']
    wavelength = header['wavelength']
    peaks = locate_maxima(image)

    spots_r_j[i] = []

    for p in peaks:
      x, y, isigma = p

      if isigma < 5.0:
        continue

      xp = pixel[0] * y - beam[0]
      yp = pixel[1] * x - beam[1]

      scale = wavelength * math.sqrt(
          xp * xp + yp * yp + distance * distance)

      X = distance / scale
      X -= 1.0 / wavelength
      Y = - xp / scale
      Z = yp / scale

      S = matrix.col([X, Y, Z])

      rtod = 180.0 / math.pi

      spots_r.append(S.rotate(axis, - phi / rtod))
      spots_r_j[i].append(S.rotate(axis, - phi / rtod))

  # now reindex the reciprocal space spot list and count - n.b. need
  # to transform the Bravais lattice to an assumed spacegroup and hence
  # to a cctbx spacegroup!

  # lists = [spots_r_j[j] for j in spots_r_j]
  lists = []
  lists.append(spots_r)

  for l in lists:

    absent = 0
    present = 0
    total = 0

    for spot in l:
      hkl = (m * spot).elems

      total += 1

      ihkl = map(nint, hkl)

      if math.fabs(hkl[0] - ihkl[0]) > 0.1:
        continue

      if math.fabs(hkl[1] - ihkl[1]) > 0.1:
        continue

      if math.fabs(hkl[2] - ihkl[2]) > 0.1:
        continue

      # now determine if it is absent

      if sg.is_sys_absent(ihkl):
        absent += 1
      else:
        present += 1

    # now perform the analysis on these numbers...

    sd = math.sqrt(absent)

    if total:

      Debug.write('Counts: %d %d %d %.3f' % \
                  (total, present, absent, (absent - 3 * sd) / total))

    else:

      Debug.write('Not enough spots found for analysis')
      return False, None, None, None

    if (absent - 3 * sd) / total < 0.008:
      return False, None, None, None

  # in here need to calculate the new orientation matrix for the
  # primitive basis and reconfigure the indexer - somehow...

  # ok, so the bases are fine, but what I will want to do is reorder them
  # to give the best primitive choice of unit cell...

  sgp = sg.build_derived_group(True, False)
  lattice_p = s2l(sgp.type().number())
  symm = crystal.symmetry(unit_cell = cell,
                          space_group = sgp)

  rdx = symm.change_of_basis_op_to_best_cell()
  symm_new = symm.change_basis(rdx)

  # now apply this to the reciprocal-space orientation matrix mi

  # cb_op = sgtbx.change_of_basis_op(rdx)
  cb_op = rdx
  R = cb_op.c_inv().r().as_rational().as_float().transpose().inverse()
  mi_r = mi * R

  # now re-derive the cell constants, just to be sure

  m_r = mi_r.inverse()
  Ar = matrix.col(m_r.elems[0:3])
  Br = matrix.col(m_r.elems[3:6])
  Cr = matrix.col(m_r.elems[6:9])

  a = math.sqrt(Ar.dot())
  b = math.sqrt(Br.dot())
  c = math.sqrt(Cr.dot())

  rtod = 180.0 / math.pi

  alpha = rtod * Br.angle(Cr)
  beta = rtod * Cr.angle(Ar)
  gamma = rtod * Ar.angle(Br)

  # print '%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f' % \
  # (a, b, c, alpha, beta, gamma)

  cell = uctbx.unit_cell((a, b, c, alpha, beta, gamma))

  amat = [wavelength * e for e in mi_r.elems]
  bmat = matrix.sqr(cell.fractionalization_matrix())
  umat = mi_r * bmat.inverse()

  # yuk! surely I don't need to do this...

  # I do need to do this, and don't call me shirley!

  new_matrix = ['%s\n' % r for r in \
                format_matrix((a, b, c, alpha, beta, gamma),
                              amat, umat.elems).split('\n')]

  # ok - this gives back the right matrix in the right setting - excellent!
  # now need to apply this back at base to the results of the indexer.

  # N.B. same should be applied to the same calculations for the XDS
  # version of this.

  return True, lattice_p, new_matrix, (a, b, c, alpha, beta, gamma)
예제 #4
0
def mosflm_matrix_centred_to_primitive(lattice, mosflm_a_matrix):
    """Convert a mosflm orientation matrix from a centred setting to a
    primitive one (i.e. same lattice, but without the centering operations,
    which therefore corresponds to a different basis)."""

    space_group_number = l2s(lattice)
    spacegroup = sgtbx.space_group_symbols(space_group_number).hall()
    sg = sgtbx.space_group(spacegroup)

    rtod = 180.0 / math.pi

    if not (sg.n_ltr() - 1):
        return mosflm_a_matrix

    cell, amat, umat = parse_matrix(mosflm_a_matrix)

    # first derive the wavelength

    mi = matrix.sqr(amat)
    m = mi.inverse()

    A = matrix.col(m.elems[0:3])
    B = matrix.col(m.elems[3:6])
    C = matrix.col(m.elems[6:9])

    a = math.sqrt(A.dot())
    b = math.sqrt(B.dot())
    c = math.sqrt(C.dot())

    # alpha = rtod * B.angle(C)
    # beta = rtod * C.angle(A)
    # gamma = rtod * A.angle(B)

    wavelength = ((cell[0] / a) + (cell[1] / b) + (cell[2] / c)) / 3.0

    # then use this to rescale the A matrix

    mi = matrix.sqr([a / wavelength for a in amat])

    sgp = sg.build_derived_group(True, False)
    symm = crystal.symmetry(unit_cell=cell, space_group=sgp)

    rdx = symm.change_of_basis_op_to_best_cell()
    # symm_new = symm.change_basis(rdx)

    # now apply this to the reciprocal-space orientation matrix mi

    cb_op = rdx
    R = cb_op.c_inv().r().as_rational().as_float().transpose().inverse()
    mi_r = mi * R

    # now re-derive the cell constants, just to be sure

    m_r = mi_r.inverse()
    Ar = matrix.col(m_r.elems[0:3])
    Br = matrix.col(m_r.elems[3:6])
    Cr = matrix.col(m_r.elems[6:9])

    a = math.sqrt(Ar.dot())
    b = math.sqrt(Br.dot())
    c = math.sqrt(Cr.dot())

    alpha = rtod * Br.angle(Cr)
    beta = rtod * Cr.angle(Ar)
    gamma = rtod * Ar.angle(Br)

    cell = uctbx.unit_cell((a, b, c, alpha, beta, gamma))

    amat = [wavelength * e for e in mi_r.elems]
    bmat = matrix.sqr(cell.fractionalization_matrix())
    umat = mi_r * bmat.inverse()

    new_matrix = [
        "%s\n" % r
        for r in format_matrix((a, b, c, alpha, beta, gamma), amat, umat.elems).split(
            "\n"
        )
    ]

    return new_matrix