예제 #1
0
class PretrainedSimpleWordEmbedderSanityTest(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.input_reader = PlainTextReader()
        list(self.input_reader.read_sents('examples/data/head.ja'))
        self.input_reader.freeze()
        self.context = ModelContext()
        self.context.dynet_param_collection = PersistentParamCollection(
            None, 0)

    def test_load(self):
        """
    Checks that the embeddings can be loaded, have the right dimension, and that one line matches.
    """
        embedder = PretrainedSimpleWordEmbedder(
            self.context, self.input_reader.vocab,
            'examples/data/wiki.ja.vec.small', 300)
        # self.assertEqual(embedder.embeddings.shape()[::-1], (self.input_reader.vocab_size(), 300))

        with io.open('examples/data/wiki.ja.vec.small',
                     encoding='utf-8') as vecfile:
            test_line = next(islice(vecfile, 9,
                                    None)).split()  # Select the vector for '日'
        test_word = test_line[0]
        test_id = self.input_reader.vocab.w2i[test_word]
        test_emb = test_line[1:]

        self.assertTrue(
            np.allclose(embedder.embeddings.batch([test_id
                                                   ]).npvalue().tolist(),
                        np.array(test_emb, dtype=float).tolist(),
                        rtol=1e-5))
예제 #2
0
class TestTruncatedBatchTraining(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=NonPersistentParamCollection())

        self.src_reader = PlainTextReader()
        self.trg_reader = PlainTextReader()
        self.src_data = list(
            self.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.trg_reader.read_sents("examples/data/head.en"))

    def assert_single_loss_equals_batch_loss(self,
                                             model,
                                             pad_src_to_multiple=1):
        """
    Tests whether single loss equals batch loss.
    Truncating src / trg sents to same length so no masking is necessary
    """
        batch_size = 5
        src_sents = self.src_data[:batch_size]
        src_min = min([len(x) for x in src_sents])
        src_sents_trunc = [s[:src_min] for s in src_sents]
        for single_sent in src_sents_trunc:
            single_sent[src_min - 1] = Vocab.ES
            while len(single_sent) % pad_src_to_multiple != 0:
                single_sent.append(Vocab.ES)
        trg_sents = self.trg_data[:batch_size]
        trg_min = min([len(x) for x in trg_sents])
        trg_sents_trunc = [s[:trg_min] for s in trg_sents]
        for single_sent in trg_sents_trunc:
            single_sent[trg_min - 1] = Vocab.ES

        single_loss = 0.0
        for sent_id in range(batch_size):
            dy.renew_cg()
            train_loss = model.calc_loss(
                src=src_sents_trunc[sent_id],
                trg=trg_sents_trunc[sent_id],
                loss_calculator=LossCalculator()).value()
            single_loss += train_loss

        dy.renew_cg()

        batched_loss = model.calc_loss(
            src=mark_as_batch(src_sents_trunc),
            trg=mark_as_batch(trg_sents_trunc),
            loss_calculator=LossCalculator()).value()
        self.assertAlmostEqual(single_loss, sum(batched_loss), places=4)

    def test_loss_model1(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.exp_global),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model)

    def test_loss_model2(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(self.exp_global, layers=3),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model, pad_src_to_multiple=4)

    def test_loss_model3(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.exp_global, layers=3),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model)

    def test_loss_model4(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.exp_global),
            attender=DotAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model)
예제 #3
0
class TestBatchTraining(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=NonPersistentParamCollection())

        self.src_reader = PlainTextReader()
        self.trg_reader = PlainTextReader()
        self.src_data = list(
            self.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.trg_reader.read_sents("examples/data/head.en"))

    def assert_single_loss_equals_batch_loss(self,
                                             model,
                                             pad_src_to_multiple=1):
        """
    Tests whether single loss equals batch loss.
    Here we don't truncate the target side and use masking.
    """
        batch_size = 5
        src_sents = self.src_data[:batch_size]
        src_min = min([len(x) for x in src_sents])
        src_sents_trunc = [s[:src_min] for s in src_sents]
        for single_sent in src_sents_trunc:
            single_sent[src_min - 1] = Vocab.ES
            while len(single_sent) % pad_src_to_multiple != 0:
                single_sent.append(Vocab.ES)
        trg_sents = self.trg_data[:batch_size]
        trg_max = max([len(x) for x in trg_sents])
        trg_masks = Mask(np.zeros([batch_size, trg_max]))
        for i in range(batch_size):
            for j in range(len(trg_sents[i]), trg_max):
                trg_masks.np_arr[i, j] = 1.0
        trg_sents_padded = [[w for w in s] + [Vocab.ES] * (trg_max - len(s))
                            for s in trg_sents]

        single_loss = 0.0
        for sent_id in range(batch_size):
            dy.renew_cg()
            train_loss = model.calc_loss(
                src=src_sents_trunc[sent_id],
                trg=trg_sents[sent_id],
                loss_calculator=LossCalculator()).value()
            single_loss += train_loss

        dy.renew_cg()

        batched_loss = model.calc_loss(
            src=mark_as_batch(src_sents_trunc),
            trg=mark_as_batch(trg_sents_padded, trg_masks),
            loss_calculator=LossCalculator()).value()
        self.assertAlmostEqual(single_loss, sum(batched_loss), places=4)

    def test_loss_model1(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model)

    def test_loss_model2(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(exp_global=self.exp_global,
                                               layers=3),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model, pad_src_to_multiple=4)

    def test_loss_model3(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global, layers=3),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        model.set_train(False)
        self.assert_single_loss_equals_batch_loss(model)
예제 #4
0
class TestEncoder(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=PersistentParamCollection("some_file", 1))

        self.src_reader = PlainTextReader()
        self.trg_reader = PlainTextReader()
        self.src_data = list(
            self.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.trg_reader.read_sents("examples/data/head.en"))

    @xnmt.events.register_xnmt_event
    def set_train(self, val):
        pass

    @xnmt.events.register_xnmt_event
    def start_sent(self, src):
        pass

    def assert_in_out_len_equal(self, model):
        dy.renew_cg()
        self.set_train(True)
        src = self.src_data[0]
        self.start_sent(src)
        embeddings = model.src_embedder.embed_sent(src)
        encodings = model.encoder(embeddings)
        self.assertEqual(len(embeddings), len(encodings))

    def test_bi_lstm_encoder_len(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.exp_global, layers=3),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )
        self.assert_in_out_len_equal(model)

    def test_uni_lstm_encoder_len(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=UniLSTMSeqTransducer(self.exp_global),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )
        self.assert_in_out_len_equal(model)

    def test_res_lstm_encoder_len(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=ResidualLSTMSeqTransducer(self.exp_global, layers=3),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )
        self.assert_in_out_len_equal(model)

    def test_py_lstm_encoder_len(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(self.exp_global, layers=3),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )
        self.set_train(True)
        for sent_i in range(10):
            dy.renew_cg()
            src = self.src_data[sent_i].get_padded_sent(
                Vocab.ES, 4 - (len(self.src_data[sent_i]) % 4))
            self.start_sent(src)
            embeddings = model.src_embedder.embed_sent(src)
            encodings = model.encoder(embeddings)
            self.assertEqual(int(math.ceil(len(embeddings) / float(4))),
                             len(encodings))

    def test_py_lstm_mask(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(self.exp_global, layers=1),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )

        batcher = xnmt.batcher.TrgBatcher(batch_size=3)
        train_src, _ = \
          batcher.pack(self.src_data, self.trg_data)

        self.set_train(True)
        for sent_i in range(3):
            dy.renew_cg()
            src = train_src[sent_i]
            self.start_sent(src)
            embeddings = model.src_embedder.embed_sent(src)
            encodings = model.encoder(embeddings)
            if train_src[sent_i].mask is None:
                assert encodings.mask is None
            else:
                np.testing.assert_array_almost_equal(
                    train_src[sent_i].mask.np_arr, encodings.mask.np_arr)