def __init__(self, alpha=0.001, beta_1=0.9, beta_2=0.999, eps=1e-8, update_every: int = 1, skip_noisy: bool = False): super().__init__(optimizer=dy.AdamTrainer( ParamManager.global_collection(), alpha, beta_1, beta_2, eps), skip_noisy=skip_noisy)
def __init__(self, alpha=1.0, dim=512, warmup_steps=4000, beta_1=0.9, beta_2=0.98, eps=1e-9): self.optimizer = dy.AdamTrainer(ParamManager.global_collection(), alpha=alpha, beta_1=beta_1, beta_2=beta_2, eps=eps) self.dim = dim self.warmup_steps = warmup_steps self.steps = 0
def __init__(self, alpha=1.0, dim=512, warmup_steps=4000, beta_1=0.9, beta_2=0.98, eps=1e-9, skip_noisy: bool = False): super().__init__(optimizer=dy.AdamTrainer( ParamManager.global_collection(), alpha=alpha, beta_1=beta_1, beta_2=beta_2, eps=eps), skip_noisy=skip_noisy) self.dim = dim self.warmup_steps = warmup_steps self.steps = 0
def __init__(self, eps=1e-6, rho=0.95, skip_noisy: bool = False): super().__init__(optimizer=dy.AdadeltaTrainer( ParamManager.global_collection(), eps, rho), skip_noisy=skip_noisy)
def __init__(self, e0=0.1, eps=1e-20, skip_noisy: bool = False): super().__init__(optimizer=dy.AdagradTrainer( ParamManager.global_collection(), e0, eps=eps), skip_noisy=skip_noisy)
def __init__(self, e0=0.01, mom=0.9, skip_noisy: bool = False): super().__init__(optimizer=dy.MomentumSGDTrainer( ParamManager.global_collection(), e0, mom), skip_noisy=skip_noisy)
def __init__(self, e0=0.1, skip_noisy: bool = False): super().__init__(optimizer=dy.SimpleSGDTrainer( ParamManager.global_collection(), e0), skip_noisy=skip_noisy)
def __init__(self, e0=0.01, mom=0.9): self.optimizer = dy.MomentumSGDTrainer( ParamManager.global_collection(), e0, mom)
def __init__(self, e0=0.1): self.optimizer = dy.SimpleSGDTrainer(ParamManager.global_collection(), e0)
def __init__(self, alpha=0.001, beta_1=0.9, beta_2=0.999, eps=1e-8): self.optimizer = dy.AdamTrainer(ParamManager.global_collection(), alpha, beta_1, beta_2, eps)
def __init__(self, eps=1e-6, rho=0.95): self.optimizer = dy.AdadeltaTrainer(ParamManager.global_collection(), eps, rho)
def __init__(self, e0=0.1, eps=1e-20): self.optimizer = dy.AdagradTrainer(ParamManager.global_collection(), e0, eps=eps)