def main(overwrite_args=None): with tee.Tee(), tee.Tee(error=True): argparser = argparse.ArgumentParser() argparser.add_argument("--dynet-mem", type=str) argparser.add_argument("--dynet-seed", type=int, help="set random seed for DyNet and XNMT.") argparser.add_argument("--dynet-autobatch", type=int) argparser.add_argument("--dynet-devices", type=str) argparser.add_argument("--dynet-viz", action='store_true', help="use visualization") argparser.add_argument("--dynet-gpu", action='store_true', help="use GPU acceleration") argparser.add_argument("--dynet-gpu-ids", type=int) argparser.add_argument("--dynet-gpus", type=int) argparser.add_argument("--dynet-weight-decay", type=float) argparser.add_argument("--dynet-profiling", type=int) argparser.add_argument("--settings", type=str, default="standard", help="settings (standard, debug, or unittest)" "must be given in '=' syntax, e.g." " --settings=standard") argparser.add_argument("experiments_file") argparser.add_argument("experiment_name", nargs='*', help="Run only the specified experiments") argparser.set_defaults(generate_doc=False) args = argparser.parse_args(overwrite_args) if args.dynet_seed: random.seed(args.dynet_seed) np.random.seed(args.dynet_seed) if args.dynet_gpu: if settings.CHECK_VALIDITY: settings.CHECK_VALIDITY = False log_preamble( "disabling CHECK_VALIDITY because it is not supported on GPU currently", logging.WARNING) config_experiment_names = YamlPreloader.experiment_names_from_file( args.experiments_file) results = [] # Check ahead of time that all experiments exist, to avoid bad surprises experiment_names = args.experiment_name or config_experiment_names if args.experiment_name: nonexistent = set(experiment_names).difference( config_experiment_names) if len(nonexistent) != 0: raise Exception("Experiments {} do not exist".format(",".join( list(nonexistent)))) log_preamble( f"running XNMT revision {tee.get_git_revision()} on {socket.gethostname()} on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" ) for experiment_name in experiment_names: ParamManager.init_param_col() uninitialized_exp_args = YamlPreloader.preload_experiment_from_file( args.experiments_file, experiment_name) logger.info(f"=> Running {experiment_name}") glob_args = uninitialized_exp_args.data.exp_global log_file = glob_args.log_file if os.path.isfile(log_file) and not settings.OVERWRITE_LOG: logger.warning( f"log file {log_file} already exists, skipping experiment; please delete log file by hand if you want to overwrite it " f"(or activate OVERWRITE_LOG, by either specifying an environment variable as OVERWRITE_LOG=1, " f"or specifying --settings=debug, or changing xnmt.settings.Standard.OVERWRITE_LOG manually)" ) continue tee.set_out_file(log_file) model_file = glob_args.model_file uninitialized_exp_args.data.exp_global.commandline_args = args # Create the model experiment = initialize_if_needed(uninitialized_exp_args) ParamManager.param_col.model_file = experiment.exp_global.model_file ParamManager.param_col.save_num_checkpoints = experiment.exp_global.save_num_checkpoints ParamManager.populate() # Run the experiment eval_scores = experiment(save_fct=lambda: save_to_file( model_file, experiment, ParamManager.param_col)) results.append((experiment_name, eval_scores)) print_results(results) tee.unset_out_file()
def main(overwrite_args: Optional[Sequence[str]] = None) -> None: with tee.Tee(), tee.Tee(error=True): argparser = argparse.ArgumentParser() utils.add_backend_argparse(argparser) argparser.add_argument("--settings", type=str, default="standard", help="settings (standard, debug, or unittest)" "must be given in '=' syntax, e.g." " --settings=standard") argparser.add_argument( "--resume", action='store_true', help="whether a saved experiment is being resumed, and" "locations of output files should be re-used.") argparser.add_argument("--backend", type=str, default="dynet", help="backend (dynet or torch)") argparser.add_argument("experiments_file") argparser.add_argument("experiment_name", nargs='*', help="Run only the specified experiments") argparser.set_defaults(generate_doc=False) args = argparser.parse_args(overwrite_args) if xnmt.backend_dynet and args.dynet_seed: args.seed = args.dynet_seed if getattr(args, "seed", None): random.seed(args.seed) np.random.seed(args.seed) if xnmt.backend_torch: torch.manual_seed(0) if xnmt.backend_dynet and args.dynet_gpu and settings.CHECK_VALIDITY: settings.CHECK_VALIDITY = False log_preamble( "disabling CHECK_VALIDITY because it is not supported in the DyNet/GPU setting", logging.WARNING) config_experiment_names = YamlPreloader.experiment_names_from_file( args.experiments_file) results = [] # Check ahead of time that all experiments exist, to avoid bad surprises experiment_names = args.experiment_name or config_experiment_names if args.experiment_name: nonexistent = set(experiment_names).difference( config_experiment_names) if len(nonexistent) != 0: raise Exception("Experiments {} do not exist".format(",".join( list(nonexistent)))) log_preamble( f"running XNMT revision {tee.get_git_revision()} on {socket.gethostname()} with {'DyNet' if xnmt.backend_dynet else 'PyTorch'} on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" ) for experiment_name in experiment_names: ParamManager.init_param_col() uninitialized_exp_args = YamlPreloader.preload_experiment_from_file( args.experiments_file, experiment_name, resume=args.resume) logger.info(f"=> Running {experiment_name}") glob_args = uninitialized_exp_args.data.exp_global log_file = glob_args.log_file if not settings.OVERWRITE_LOG: log_files_exist = [] if os.path.isfile(log_file): log_files_exist.append(log_file) if os.path.isdir(log_file + ".tb"): log_files_exist.append(log_file + ".tb/") if log_files_exist: logger.warning( f"log file(s) {' '.join(log_files_exist)} already exists, skipping experiment; " f"please delete log file by hand if you want to overwrite it " f"(or activate OVERWRITE_LOG, by either specifying an environment variable OVERWRITE_LOG=1, " f"or specifying --settings=debug, or changing xnmt.settings.Standard.OVERWRITE_LOG manually)" ) continue elif settings.OVERWRITE_LOG and os.path.isdir(log_file + ".tb"): shutil.rmtree( log_file + ".tb/" ) # remove tensorboard logs from previous run that is being overwritten tee.set_out_file(log_file, exp_name=experiment_name) try: model_file = glob_args.model_file uninitialized_exp_args.data.exp_global.commandline_args = vars( args) # Create the model experiment = initialize_if_needed(uninitialized_exp_args) ParamManager.param_col.model_file = experiment.exp_global.model_file ParamManager.param_col.save_num_checkpoints = experiment.exp_global.save_num_checkpoints ParamManager.populate() # Run the experiment eval_scores = experiment( save_fct=lambda: save_to_file(model_file, experiment)) results.append((experiment_name, eval_scores)) print_results(results) except Exception as e: file_logger.error(traceback.format_exc()) raise e finally: tee.unset_out_file()