def main(simulated_time): random.seed(RANDOM_SEED) """ TOPOLOGY from a json """ t = Topology() t_json = create_json_topology() t.load(t_json) t.write("network.gexf") """ APPLICATION """ app = create_application() """ PLACEMENT algorithm """ placement = CloudPlacement( "onCloud") # it defines the deployed rules: module-device placement.scaleService({"ServiceA": 1}) """ POPULATION algorithm """ #In ifogsim, during the creation of the application, the Sensors are assigned to the topology, in this case no. As mentioned, YAFS differentiates the adaptive sensors and their topological assignment. #In their case, the use a statical assignment. pop = Statical("Statical") #For each type of sink modules we set a deployment on some type of devices #A control sink consists on: # args: # model (str): identifies the device or devices where the sink is linked # number (int): quantity of sinks linked in each device # module (str): identifies the module from the app who receives the messages pop.set_sink_control({ "model": "actuator-device", "number": 1, "module": app.get_sink_modules() }) #In addition, a source includes a distribution function: dDistribution = deterministicDistribution(name="Deterministic", time=100) pop.set_src_control({ "model": "sensor-device", "number": 1, "message": app.get_message("M.A"), "distribution": dDistribution }) """-- SELECTOR algorithm """ #Their "selector" is actually the shortest way, there is not type of orchestration algorithm. #This implementation is already created in selector.class,called: First_ShortestPath selectorPath = MinimunPath() """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path="Results") s.deploy_app(app, placement, pop, selectorPath) s.run(stop_time, show_progress_monitor=False)
def main(simulated_time): random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) """ TOPOLOGY from a json """ t = Topology() t_json = create_json_topology() t.load(t_json) t.write("network.gexf") """ APPLICATION """ app = create_application() """ PLACEMENT algorithm """ # MINHA IMPLEMENTACAO DO ALGORITMO PARA PLACEMENT. # UTILIZA A PROPRIEDADE model:node placement = UCPlacement(name="UCPlacement") # Para criar replicas dos servicos placement.scaleService({"MLTTask": 1, "FLTTask":1, "DLTTask":1}) """ POPULATION algorithm """ #In ifogsim, during the creation of the application, the Sensors are assigned to the topology, in this case no. As mentioned, YAFS differentiates the adaptive sensors and their topological assignment. #In their case, the use a statical assignment. pop = Statical("Statical") #For each type of sink modules we set a deployment on some type of devices #A control sink consists on: # args: # model (str): identifies the device or devices where the sink is linked # number (int): quantity of sinks linked in each device # module (str): identifies the module from the app who receives the messages pop.set_sink_control({"model": "sink","number":0,"module":app.get_sink_modules()}) #In addition, a source includes a distribution function: dDistribution = deterministicDistribution(name="Deterministic",time=10) # delayDistribution = deterministicDistributionStartPoint(400, 100, name="DelayDeterministic") # number:quantidade de replicas pop.set_src_control({"model": "camera", "number":1,"message": app.get_message("M.Cam"), "distribution": dDistribution}) # pop.set_src_control({"type": "mlt", "number":1,"message": app.get_message("M.MLT"), "distribution": dDistribution}) """ SELECTOR algorithm """ #Their "selector" is actually the shortest way, there is not type of orchestration algorithm. #This implementation is already created in selector.class,called: First_ShortestPath selectorPath = MinimunPath() # selectorPath = MinPath_RoundRobin() """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path="Results") s.deploy_app(app, placement, pop, selectorPath) s.run(stop_time,show_progress_monitor=False) s.draw_allocated_topology() # for debugging
def main(): random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) """ Detalles """ topologies = { "Grid": "data/grid200.graphml", "BarabasiAlbert": "data/BarabasiAlbert2.graphml", "RandomEuclidean": "data/RandomEuclidean.graphml", "Lobster": "data/Lobster.graphml", } community_size = [50, 100, 150, 200, 300] threshold_population_edge = 0.010 ltopo = [] lnodes = [] ledges = [] lavepath = [] leddev = [] try: for key_topo in topologies.keys(): """ TOPOLOGY from a json """ t = Topology() # t_json = create_json_topology() # t.load(t_json) t.load_graphml(topologies[key_topo]) print "TOPOLOGY: %s" % key_topo print "Total Nodes: %i" % len(t.G.nodes()) print "Total Vertexs: %i" % len(t.G.edges()) print "Average shortest path: %s" % nx.average_shortest_path_length( t.G) # t.write("network_ex2.gexf") ltopo.append(key_topo) lnodes.append(len(t.G.nodes())) ledges.append(len(t.G.edges())) lavepath.append(nx.average_shortest_path_length(t.G)) ### COMPUTING Node degrees ### Stablish the Edge devices (acc. with Algoritm.nodedegree >... 1) ### Identify Cloud Device (max. degree) deg = {} edge = {} cloud_device = 0 bestDeg = -1 for n in t.G.nodes(): d = t.G.degree(n) if d > bestDeg: bestDeg = d cloud_device = int(n) deg[n] = {"degree": d} #### MUST BE IMPROVED if key_topo in ["BarabasiAlbert", "Lobster"]: if d == 1: edge[n] = -1 elif key_topo in ["Grid"]: if d <= 3: edge[n] = -1 elif key_topo in ["RandomEuclidean"]: if d > 14: edge[n] = -1 print "Total Edge-Devices: %i" % len(edge.keys()) leddev.append(len(edge.keys())) """ OJO """ #TODO if key_topo in ["Grid"]: cloud_device = 320 print "ID of Cloud-Device: %i" % cloud_device continue #print "Total edges devices: %i" % len(edge.keys()) #nx.set_node_attributes(t.G, values=deg) ## COMPUTING MATRIX SHORTEST PATH among EDGE-devices minPath = {} minDis = {} for d in edge.keys(): minDis[d] = [] for d1 in edge.keys(): if d == d1: continue path = list(nx.shortest_path(t.G, source=d, target=d1)) minPath[(d, d1)] = path minDis[d].append(len(path)) """ WORKLOAD DEFINITION & REGION SENSORS (=Communities) """ for size in community_size: print "SIZE Of Community: %i" % size communities, com = generate_communities( size, edge, minPath, minDis, threshold_population_edge, cloud_device) #print "Computed Communities" # print communities #for idx,c in enumerate(communities): # print "\t %i - size: %i -: %s" %(idx,len(c),c) ### WRITING NETWORK nx.set_node_attributes(t.G, values=com) t.write("tmp/network-communities-%s-%i.gexf" % (key_topo, size)) # exit() #TODO suposicion cada comunidad es un tipo de carga sensor_workload_types = communities lambdas_wl = np.random.randint(low=5, high=10, size=len(sensor_workload_types)) id_lambdas = zip(range(0, len(lambdas_wl)), lambdas_wl) id_lambdas.sort(key=lambda tup: tup[1], reverse=True) # sorts in place #print id_lambdas # [(1, 9), (0, 8)] """ topology.Centricity """ # Both next ids be extracted from topology.entities all_nodes_dev = t.G.nodes() edge_dev = edge.keys() weights = computingWeights(t, all_nodes_dev, edge_dev, sensor_workload_types) print "Computed weights" """ APPLICATION """ apps = [] pops = [] for idx in range(0, len(sensor_workload_types)): apps.append(create_application(idx)) pops.append(Statical("Statical-%i" % idx)) """ PLACEMENT algorithm """ #There is not modules thus placement.functions are empty placement = NoPlacementOfModules("empty") """-- SELECTOR algorithm """ # This implementation is already created in selector.class,called: First_ShortestPath selectorPath = First_ShortestPath() #In this point, the study analizes the behaviour of the deployment of (sink, src) modules (population) in different set of centroide algorithms #functions = {"Cluster":"Cluster","Eigenvector":nx.eigenvector_centrality,"Current_flow_betweenness_centrality":nx.current_flow_betweenness_centrality, # "Betweenness_centrality":nx.betweenness_centrality,"load_centrality":nx.load_centrality} #"katz_centrality":nx.katz_centrality, #functions = {"Current_flow_betweenness_centrality":nx.current_flow_betweenness_centrality} functions = { "Cluster": "Cluster", "Eigenvector": nx.eigenvector_centrality, "Current_flow_betweenness_centrality": nx.current_flow_betweenness_centrality, "Betweenness_centrality": nx.betweenness_centrality, #"Load_centrality": nx.load_centrality } # "katz_centrality":nx.katz_centrality, for f in functions: print "Analysing network with algorithm: %s " % f """ POPULATION algorithm """ pops = [] for idx in range(0, len(sensor_workload_types)): pops.append(Statical("Statical-%i" % idx)) # print "-"*20 # print "Function: %s" %f # print "-"*20 if "Cluster" in f: for idWL in id_lambdas: idx = idWL[0] # print idx ## idWL[0] #index WL ## idWL[1] #lambda ### ALL SINKS goes to Cluster ID: NODE 0 # print "\t", "SINK" pops[idx].set_sink_control({ "id": [cloud_device], "number": 1, "module": apps[idx].get_sink_modules() }) # print "\t", "SOURCE" # In addition, a source includes a distribution function: dDistribution = deterministicDistribution( name="Deterministic", time=idWL[1]) pops[idx].set_src_control({ "id": sensor_workload_types[idx], "number": 1, "message": apps[idx].get_message("m-st"), "distribution": dDistribution }) else: #Computing best device for each WL-type and each centrality function print "\t Computando centralidad " centralWL = range(0, len(weights)) for idx, v in enumerate(sensor_workload_types): if idx % 20 == 0: print "\t\t%i%%", idx nx.set_edge_attributes(t.G, values=weights[idx], name="weight") centrality = functions[f](t.G, weight="weight") # print(['%s %0.2f' % (node, centrality[node]) for node in centrality]) centralWL[idx] = centrality print "\t Generando SINK/SRCs centralidad " previous_deploy = {} ## DEV -> ID:load for idWL in id_lambdas: idx = idWL[0] ## idWL[0] #index WL ## idWL[1] #lambda for dev, value in sorted( centralWL[idx].iteritems(), key=lambda (k, v): (v, k), reverse=True): # print "%s: %s" % (dev, value) #TODO CONTTOLAR LA CAPACIDAD DEL DISPOSITO HERE if not dev in previous_deploy.values(): previous_deploy[idx] = dev break #TODO chequear que dEV es un device # print "\t Previous deploy: ",previous_deploy # print "\t NameApp: ",apps[idx].name # print "\t Device:",dev #Each application have a correspondence SRC/SINK among APPS pops[idx].set_sink_control({ "id": [dev], "number": 1, "module": apps[idx].get_sink_modules() }) dDistribution = deterministicDistribution( name="Deterministic", time=idWL[1]) #In addition, a source includes a distribution function: pops[idx].set_src_control({ "id": sensor_workload_types[idx], "number": 1, "message": apps[idx].get_message("m-st"), "distribution": dDistribution }) """ SIMULATION ENGINE """ stop_time = 100 #CHECK s = Sim(t) for idx, app in enumerate(apps): s.deploy_app(app, placement, pops[idx], selectorPath) s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False) #end for algorithms #end for communities size #end for topology change print ltopo print lnodes print ledges print lavepath print leddev #end try except: print "Some error??"
def main(simulated_time, depth, police): random.seed(RANDOM_SEED) """ TOPOLOGY from a json """ numOfDepts = depth numOfMobilesPerDept = 4 # Thus, this variable is used in the population algorithm # In YAFS simulator, entities representing mobiles devices (sensors or actuactors) are not necessary because they are simple "abstract" links to the access points # in any case, they can be implemented with node entities with no capacity to execute services. # t = Topology() t_json = create_json_topology(numOfDepts, numOfMobilesPerDept) t.load(t_json) t.write("network_%s.gexf" % depth) """ APPLICATION """ app = create_application() """ PLACEMENT algorithm """ #In this case: it will deploy all app.modules in the cloud if police == "cloud": print "cloud" placement = CloudPlacement("onCloud") placement.scaleService({ "Calculator": numOfDepts * numOfMobilesPerDept, "Coordinator": 1 }) else: print "EDGE" placement = FogPlacement("onProxies") placement.scaleService({ "Calculator": numOfMobilesPerDept, "Coordinator": 1 }) # placement = ClusterPlacement("onCluster", activation_dist=next_time_periodic, time_shift=600) """ POPULATION algorithm """ #In ifogsim, during the creation of the application, the Sensors are assigned to the topology, in this case no. As mentioned, YAFS differentiates the adaptive sensors and their topological assignment. #In their case, the use a statical assignment. pop = Statical("Statical") #For each type of sink modules we set a deployment on some type of devices #A control sink consists on: # args: # model (str): identifies the device or devices where the sink is linked # number (int): quantity of sinks linked in each device # module (str): identifies the module from the app who receives the messages pop.set_sink_control({ "model": "a", "number": 1, "module": app.get_sink_modules() }) #In addition, a source includes a distribution function: dDistribution = deterministicDistribution(name="Deterministic", time=100) pop.set_src_control({ "model": "s", "number": 1, "message": app.get_message("M.EGG"), "distribution": dDistribution }) """-- SELECTOR algorithm """ #Their "selector" is actually the shortest way, there is not type of orchestration algorithm. #This implementation is already created in selector.class,called: First_ShortestPath if police == "cloud": selectorPath = CloudPath_RR() else: selectorPath = BroadPath(numOfMobilesPerDept) """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path="Results_%s_%i_%i" % (police, stop_time, depth)) s.deploy_app(app, placement, pop, selectorPath) s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False)
sim.stop_process(key) except IndexError: None else: sim.stop = True ## We stop the simulation def main(simulated_time, path, pathResults, case, it): """ TOPOLOGY from a json """ t = Topology() dataNetwork = json.load(open(path + 'networkDefinition.json')) t.load(dataNetwork) t.write(path + "network.gexf") # t = loadTopology(path + 'test_GLP.gml') """ APPLICATION """ dataApp = json.load(open(path + 'appDefinition.json')) apps = create_applications_from_json(dataApp) # for app in apps: # print apps[app] """ PLACEMENT algorithm """ # In our model only initial cloud placements are enabled placementJson = json.load(open(path + 'allocDefinition.json')) placement = JSONPlacement(name="Placement", json=placementJson) """
def main(simulated_time): random.seed(RANDOM_SEED) """ TOPOLOGY from a json """ t = Topology() data = json.load(open('egg_infrastructure.json')) pprint(data["entity"]) t.load(data) t.write("network.gexf") """ APPLICATION """ app = create_application() """ PLACEMENT algorithm """ #This adaptation can be done manually or automatically. # We make a simple manual allocation from the FogTorch output #8 - [client_0_0->sp_0_0][client_0_1->sp_0_1][client_0_2->sp_0_2][client_0_3->sp_0_3][client_1_0->sp_1_0][client_1_1->sp_1_1][client_1_2->sp_1_2] # [client_1_3->sp_1_3] # [concentrator->gw_0][coordinator->gw_1]; 0.105; 2.5; 6.01 placementJson = { "initialAllocation": [ {"app": "EGG_GAME", "module_name": "Calculator", "id_resource": 3}, {"app": "EGG_GAME", "module_name": "Coordinator", "id_resource": 8}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 4}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 5}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 6}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 7}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 9}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 10}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 11}, {"app": "EGG_GAME", "module_name": "Client", "id_resource": 12}, ] } placement = JSONPlacement(name="Places",json=placementJson) """ POPULATION algorithm """ populationJSON = { "sinks": [ {"app": "EGG_GAME", "module_name": "Display", "id_resource": 4}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 5}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 6}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 7}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 9}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 10}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 11}, {"app": "EGG_GAME", "module_name": "Display", "id_resource": 12} ], "sources":[ {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":4}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":5}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":6}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":7}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":9}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":10}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":11}, {"app": "EGG_GAME", "message":"M.EGG", "lambda":100,"id_resource":12}, ] } pop = JSONPopulation(name="Statical",json=populationJSON,iteration=0) """ SELECTOR algorithm """ selectorPath = MinShortPath() """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path="Results_%i" % (stop_time)) s.deploy_app(app, placement, pop, selectorPath) s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False) s.print_debug_assignaments()
def main(simulated_time, experimento, ilpPath, it): """ TOPOLOGY from a json """ t = Topology() dataNetwork = json.load(open(experimento + 'networkDefinition.json')) t.load(dataNetwork) t.write("network.gexf") """ APPLICATION """ dataApp = json.load(open(experimento + 'appDefinition.json')) apps = create_applications_from_json(dataApp) #for app in apps: # print apps[app] """ PLACEMENT algorithm """ placementJson = json.load( open(experimento + 'allocDefinition%s.json' % ilpPath)) placement = JSONPlacement(name="Placement", json=placementJson) ### Placement histogram # listDevices =[] # for item in placementJson["initialAllocation"]: # listDevices.append(item["id_resource"]) # import matplotlib.pyplot as plt # print listDevices # print np.histogram(listDevices,bins=range(101)) # plt.hist(listDevices, bins=100) # arguments are passed to np.histogram # plt.title("Placement Histogram") # plt.show() ## exit() """ POPULATION algorithm """ dataPopulation = json.load(open(experimento + 'usersDefinition.json')) pop = JSONPopulation(name="Statical", json=dataPopulation, iteration=it) """ SELECTOR algorithm """ selectorPath = DeviceSpeedAwareRouting() """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path=experimento + "Results_%s_%i_%i" % (ilpPath, stop_time, it)) """ Failure process """ # time_shift = 10000 # distribution = deterministicDistributionStartPoint(name="Deterministic", time=time_shift,start=10000) # failurefilelog = open(experimento+"Failure_%s_%i.csv" % (ilpPath,stop_time),"w") # failurefilelog.write("node, module, time\n") # idCloud = t.find_IDs({"type": "CLOUD"})[0] #[0] -> In this study there is only one CLOUD DEVICE # centrality = np.load(pathExperimento+"centrality.npy") # randomValues = np.load(pathExperimento+"random.npy") # # s.deploy_monitor("Failure Generation", failureControl, distribution,sim=s,filelog=failurefilelog,ids=centrality) # s.deploy_monitor("Failure Generation", failureControl, distribution,sim=s,filelog=failurefilelog,ids=randomValues) #For each deployment the user - population have to contain only its specific sources for aName in apps.keys(): print "Deploying app: ", aName pop_app = JSONPopulation(name="Statical_%s" % aName, json={}, iteration=it) data = [] for element in pop.data["sources"]: if element['app'] == aName: data.append(element) pop_app.data["sources"] = data s.deploy_app(apps[aName], placement, pop_app, selectorPath) s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False) #TEST to TRUE
def main(simulated_time,experimento,ilpPath): random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) """ TOPOLOGY from a json """ t = Topology() dataNetwork = json.load(open(experimento+'networkDefinition.json')) t.load(dataNetwork) t.write("network.gexf") """ APPLICATION """ dataApp = json.load(open(experimento+'appDefinition.json')) apps = create_applications_from_json(dataApp) #for app in apps: # print apps[app] """ PLACEMENT algorithm """ placementJson = json.load(open(experimento+'allocDefinition%s.json'%ilpPath)) placement = JSONPlacement(name="Placement",json=placementJson) ### Placement histogram # listDevices =[] # for item in placementJson["initialAllocation"]: # listDevices.append(item["id_resource"]) # import matplotlib.pyplot as plt # print listDevices # print np.histogram(listDevices,bins=range(101)) # plt.hist(listDevices, bins=100) # arguments are passed to np.histogram # plt.title("Placement Histogram") # plt.show() ## exit() """ POPULATION algorithm """ dataPopulation = json.load(open(experimento+'usersDefinition.json')) pop = JSONPopulation(name="Statical",json=dataPopulation) """ SELECTOR algorithm """ selectorPath = DeviceSpeedAwareRouting() """ SIMULATION ENGINE """ stop_time = simulated_time s = Sim(t, default_results_path=experimento + "Results_%s_%i" % (ilpPath, stop_time)) #For each deployment the user - population have to contain only its specific sources for aName in apps.keys(): print "Deploying app: ",aName pop_app = JSONPopulation(name="Statical_%s"%aName,json={}) data = [] for element in pop.data["sources"]: if element['app'] == aName: data.append(element) pop_app.data["sources"]=data s.deploy_app(apps[aName], placement, pop_app, selectorPath) s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False) #TEST to TRUE