예제 #1
0
    def __init__(self, path_to_model, input_tensor=None):
        """
        Initializes the attributes for the class NeuralNetDetector.

        Parameters:
        -----------
        path_to_model: str
            location of trained neural net autoencoder
        """
        if not path_to_model.endswith('.ckpt'):
            path_to_model = path_to_model + '.ckpt'

        self.path_to_model = path_to_model

        # load parameter of autoencoder
        path_to_filters_ae = change_extension(path_to_model, 'yaml')
        self.ae_dict = load_yaml(path_to_filters_ae)
        n_input = self.ae_dict['n_input']
        n_features = self.ae_dict['n_features']

        # initialize autoencoder weight
        self.W_ae = tf.Variable(
            tf.random_uniform((n_input, n_features), -1.0 / np.sqrt(n_input),
                              1.0 / np.sqrt(n_input)))

        # create saver variables
        self.saver = tf.train.Saver({"W_ae": self.W_ae})

        # make score tensorflow tensor from waveform
        self.score_tf = self._make_graph(input_tensor)
예제 #2
0
파일: nnae.py 프로젝트: kathefter/yass
    def __init__(self, path_to_ae_model):
        """
        Initializes the attributes for the class NeuralNetDetector.

        Parameters:
        -----------
        path_to_ae_model: str
            location of trained neural net autoencoder
        """

        # add locations as attributes
        self.path_to_ae_model = path_to_ae_model

        # load parameter of autoencoder
        path_to_filters_ae = change_extension(path_to_ae_model, 'yaml')
        self.ae_dict = load_yaml(path_to_filters_ae)
        n_input = self.ae_dict['n_input']
        n_features = self.ae_dict['n_features']

        # initialize autoencoder weight
        self.W_ae = tf.Variable(
            tf.random_uniform((n_input, n_features), -1.0 / np.sqrt(n_input),
                              1.0 / np.sqrt(n_input)))

        # create saver variables
        self.saver_ae = tf.train.Saver({"W_ae": self.W_ae})
예제 #3
0
    def __init__(self, path_to_triage_model):
        """
            Initializes the attributes for the class NeuralNetDetector.

            Parameters:
            -----------
            config: configuration file
        """

        self.path_to_triage_model = path_to_triage_model

        path_to_filters = change_extension(path_to_triage_model, 'yaml')
        self.filters_dict = load_yaml(path_to_filters)

        R1 = self.filters_dict['size']
        K1, K2 = self.filters_dict['filters']
        C = self.filters_dict['n_neighbors']

        self.W1 = weight_variable([R1, 1, 1, K1])
        self.b1 = bias_variable([K1])

        self.W11 = weight_variable([1, 1, K1, K2])
        self.b11 = bias_variable([K2])

        self.W2 = weight_variable([1, C, K2, 1])
        self.b2 = bias_variable([1])

        self.saver = tf.train.Saver({
            "W1": self.W1,
            "W11": self.W11,
            "W2": self.W2,
            "b1": self.b1,
            "b11": self.b11,
            "b2": self.b2
        })
예제 #4
0
    def __init__(self, path_to_detector_model, path_to_ae_model):
        """
            Initializes the attributes for the class NeuralNetDetector.

            Parameters:
            -----------

        """

        self.path_to_detector_model = path_to_detector_model
        self.path_to_ae_model = path_to_ae_model

        path_to_filters = change_extension(path_to_detector_model, 'yaml')
        self.filters_dict = load_yaml(path_to_filters)

        R1 = self.filters_dict['size']
        K1, K2 = self.filters_dict['filters']
        C = self.filters_dict['n_neighbors']

        self.W1 = weight_variable([R1, 1, 1, K1])
        self.b1 = bias_variable([K1])

        self.W11 = weight_variable([1, 1, K1, K2])
        self.b11 = bias_variable([K2])

        self.W2 = weight_variable([1, C, K2, 1])
        self.b2 = bias_variable([1])

        # output of ae encoding (1st layer)
        path_to_filters_ae = change_extension(path_to_ae_model, 'yaml')
        ae_dict = load_yaml(path_to_filters_ae)
        n_input = ae_dict['n_input']
        n_features = ae_dict['n_features']
        self.W_ae = tf.Variable(
            tf.random_uniform((n_input, n_features), -1.0 / np.sqrt(n_input),
                              1.0 / np.sqrt(n_input)))

        self.saver_ae = tf.train.Saver({"W_ae": self.W_ae})
        self.saver = tf.train.Saver({
            "W1": self.W1,
            "W11": self.W11,
            "W2": self.W2,
            "b1": self.b1,
            "b11": self.b11,
            "b2": self.b2
        })
예제 #5
0
    def load(cls, path_to_model, input_tensor=None):

        if not path_to_model.endswith('.ckpt'):
            path_to_model = path_to_model + '.ckpt'

        # load parameter of autoencoder
        path_to_params = change_extension(path_to_model, 'yaml')
        params = load_yaml(path_to_params)

        return cls(path_to_model, params['waveform_length'],
                   params['n_features'], input_tensor)
예제 #6
0
    def load(cls, path_to_model, threshold, channel_index):

        if not path_to_model.endswith('.ckpt'):
            path_to_model = path_to_model+'.ckpt'

        # load nn parameter files
        path_to_params = change_extension(path_to_model, 'yaml')
        params = load_yaml(path_to_params)

        return cls(path_to_model, params['filters_size'],
                   params['waveform_length'], params['n_neighbors'],
                   threshold, channel_index)
예제 #7
0
    def fit(self, x_train):
        """
        Trains the autoencoder for feature extraction

        Parameters:
        -----------
        x_train: np.array
            [number of training data, temporal length] noisy isolated spikes
            for training the autoencoder.
        y_train: np.array
            [number of training data, temporal length] clean (denoised)
            isolated spikes as labels.
        path_to_model: string
            name of the .ckpt to be saved.
        """
        # FIXME: y_ae no longer used

        logger = logging.getLogger(__name__)

        # parameters
        n_data, waveform_length = x_train.shape

        self._validate_dimensions(waveform_length)

        pca = PCA(n_components=self.n_features).fit(x_train)

        self.vars_dict['W_ae'] = (tf.Variable(
            (pca.components_.T).astype('float32')))

        # saver
        saver = tf.train.Saver(self.vars_dict)

        ############
        # training #
        ############

        logger.info('Training autoencoder network...')

        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
            saver.save(sess, self.path_to_model)

        path_to_params = change_extension(self.path_to_model, 'yaml')

        params = dict(waveform_length=self.waveform_length,
                      n_features=self.n_features)

        self._save_params(path=path_to_params, params=params)
예제 #8
0
    def train(cls, x_train, y_train, n_features, n_iter, n_batch,
              train_step_size, path_to_model):
        """
        Trains the autoencoder for feature extraction

        Parameters:
        -----------
        x_train: np.array
            [number of training data, temporal length] noisy isolated spikes
            for training the autoencoder.
        y_train: np.array
            [number of training data, temporal length] clean (denoised)
            isolated spikes as labels.
        path_to_model: string
            name of the .ckpt to be saved.
        """
        logger = logging.getLogger(__name__)

        if not path_to_model.endswith('.ckpt'):
            path_to_model = path_to_model + '.ckpt'

        # parameters
        n_data, n_input = x_train.shape

        pca = PCA(n_components=n_features).fit(x_train)

        # encoding
        W_ae = tf.Variable((pca.components_.T).astype('float32'))

        # saver
        saver = tf.train.Saver({"W_ae": W_ae})

        ############
        # training #
        ############

        logger.info('Training autoencoder network...')

        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
            saver.save(sess, path_to_model)

        save_ae_network_params(n_input=x_train.shape[1],
                               n_features=n_features,
                               output_path=change_extension(
                                   path_to_model, 'yaml'))
예제 #9
0
파일: model_triage.py 프로젝트: Nomow/yass
    def load(cls,
             path_to_model,
             threshold,
             input_tensor=None,
             load_test_set=False):
        """Load a model from a file
        """
        if not path_to_model.endswith('.ckpt'):
            path_to_model = path_to_model + '.ckpt'

        # load necessary parameters
        path_to_params = change_extension(path_to_model, 'yaml')
        params = load_yaml(path_to_params)

        return cls(path_to_model=path_to_model,
                   filters_size=params['filters_size'],
                   waveform_length=params['waveform_length'],
                   n_neighbors=params['n_neighbors'],
                   threshold=threshold,
                   input_tensor=input_tensor,
                   load_test_set=load_test_set)
예제 #10
0
    def __init__(self, path_to_detector_model):
        """
        Initializes the attributes for the class NeuralNetDetector.

        Parameters:
        -----------
        path_to_detector_model: str
            location of trained neural net detectior
        """

        # add locations as attributes
        self.path_to_detector_model = path_to_detector_model

        # load nn parameter files
        path_to_filters = change_extension(path_to_detector_model, 'yaml')
        self.filters_dict = load_yaml(path_to_filters)

        # initialize neural net weights and add as attributes
        R1 = self.filters_dict['size']
        K1, K2 = self.filters_dict['filters']
        C = self.filters_dict['n_neighbors']

        self.W1 = weight_variable([R1, 1, 1, K1])
        self.b1 = bias_variable([K1])

        self.W11 = weight_variable([1, 1, K1, K2])
        self.b11 = bias_variable([K2])

        self.W2 = weight_variable([1, C, K2, 1])
        self.b2 = bias_variable([1])

        # create saver variables
        self.saver = tf.train.Saver({
            "W1": self.W1,
            "W11": self.W11,
            "W2": self.W2,
            "b1": self.b1,
            "b11": self.b11,
            "b2": self.b2
        })
예제 #11
0
파일: nntriage.py 프로젝트: kathefter/yass
    def __init__(self, path_to_triage_model):
        """
            Initializes the attributes for the class NeuralNetTriage.

            Parameters:
            -----------
            path_to_detector_model: str
                location of trained neural net triage
        """
        # save path to the model as an attribute
        self.path_to_triage_model = path_to_triage_model

        # load necessary parameters
        path_to_filters = change_extension(path_to_triage_model, 'yaml')
        self.filters_dict = load_yaml(path_to_filters)
        R1 = self.filters_dict['size']
        K1, K2 = self.filters_dict['filters']
        C = self.filters_dict['n_neighbors']

        # initialize and save nn weights
        self.W1 = weight_variable([R1, 1, 1, K1])
        self.b1 = bias_variable([K1])

        self.W11 = weight_variable([1, 1, K1, K2])
        self.b11 = bias_variable([K2])

        self.W2 = weight_variable([1, C, K2, 1])
        self.b2 = bias_variable([1])

        # initialize savers
        self.saver = tf.train.Saver({
            "W1": self.W1,
            "W11": self.W11,
            "W2": self.W2,
            "b1": self.b1,
            "b11": self.b11,
            "b2": self.b2
        })
예제 #12
0
def train_neural_networks(CONFIG, CONFIG_TRAIN, spike_train, data_folder):
    """Train all neural networks

    Parameters
    ----------
    """
    logger = logging.getLogger(__name__)

    chosen_templates = CONFIG_TRAIN['templates']['ids']
    min_amp = CONFIG_TRAIN['templates']['minimum_amplitude']
    nspikes = CONFIG_TRAIN['training']['n_spikes']
    n_filters_detect = CONFIG_TRAIN['network_detector']['n_filters']
    n_iter = CONFIG_TRAIN['training']['n_iterations']
    n_batch = CONFIG_TRAIN['training']['n_batch']
    l2_reg_scale = CONFIG_TRAIN['training']['l2_regularization_scale']
    train_step_size = CONFIG_TRAIN['training']['step_size']
    detectnet_name = CONFIG_TRAIN['network_detector']['name'] + '.ckpt'
    n_filters_triage = CONFIG_TRAIN['network_triage']['n_filters']
    triagenet_name = CONFIG_TRAIN['network_triage']['name'] + '.ckpt'
    n_features = CONFIG_TRAIN['network_autoencoder']['n_features']
    ae_name = CONFIG_TRAIN['network_autoencoder']['name'] + '.ckpt'

    # generate training data
    logger.info('Generating training data...')
    (x_detect, y_detect, x_triage, y_triage, x_ae,
     y_ae) = make_training_data(CONFIG,
                                spike_train,
                                chosen_templates,
                                min_amp,
                                nspikes,
                                data_folder=data_folder)

    # train detector
    logger.info('Training detector network...')
    train_detector(x_detect, y_detect, n_filters_detect, n_iter, n_batch,
                   l2_reg_scale, train_step_size, detectnet_name)

    # save detector model parameters
    logger.info('Saving detector network parameters...')
    save_detect_network_params(filters=n_filters_detect,
                               size=x_detect.shape[1],
                               n_neighbors=x_detect.shape[2],
                               output_path=change_extension(
                                   detectnet_name, 'yaml'))

    # train triage
    logger.info('Training triage network...')
    train_triage(x_triage, y_triage, n_filters_triage, n_iter, n_batch,
                 l2_reg_scale, train_step_size, triagenet_name)

    # save triage model parameters
    logger.info('Saving triage network parameters...')
    save_triage_network_params(filters=n_filters_triage,
                               size=x_detect.shape[1],
                               n_neighbors=x_detect.shape[2],
                               output_path=change_extension(
                                   triagenet_name, 'yaml'))

    # train autoencoder
    logger.info('Training autoencoder network...')
    train_ae(x_ae, y_ae, n_features, n_iter, n_batch, train_step_size, ae_name)

    # save autoencoder model parameters
    logger.info('Saving autoencoder network parameters...')
    save_ae_network_params(n_input=x_ae.shape[1],
                           n_features=n_features,
                           output_path=change_extension(ae_name, 'yaml'))
예제 #13
0
파일: model_triage.py 프로젝트: Nomow/yass
    def fit(self, x_train, y_train, test_size=0.3, save_test_set=False):
        """Trains the triage network

        Parameters
        ----------
        x_train: np.array
            [number of data, temporal length, number of channels] training data
            for the triage network.
        y_train: np.array
            [number of data] training label for the triage network.
        test_size: float, optional
            Proportion of the training set to be used, data is shuffled before
            splitting, defaults to 0.3

        Returns
        -------
        dict
            Dictionary with network parameters and metrics

        Notes
        -----
        Size is determined but the second dimension in x_train
        """
        #####################
        # Splitting dataset #
        #####################

        (self.x_train, self.x_test, self.y_train,
         self.y_test) = train_test_split(x_train, y_train, test_size=test_size)

        # get parameters
        n_data, waveform_length_train, n_neighbors_train = self.x_train.shape

        self._validate_dimensions(waveform_length_train, n_neighbors_train)

        # x and y input tensors
        x_tf = tf.placeholder("float",
                              [None, self.waveform_length, self.n_neighbors])
        y_tf = tf.placeholder("float", [None])

        o_layer, vars_dict = (NeuralNetTriage._make_network(
            x_tf, self.filters_size, self.waveform_length, self.n_neighbors))
        logits = tf.squeeze(o_layer)

        # cross entropy
        cross_entropy = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                    labels=y_tf))

        # regularization term
        weights = tf.trainable_variables()
        l2_regularizer = (tf.contrib.layers.l2_regularizer(
            scale=self.l2_reg_scale))
        regularization_penalty = tf.contrib.layers.apply_regularization(
            l2_regularizer, weights)
        regularized_loss = cross_entropy + regularization_penalty

        # train step
        train_step = tf.train.AdamOptimizer(
            self.train_step_size).minimize(regularized_loss)

        # saver
        saver = tf.train.Saver(vars_dict)

        ############
        # training #
        ############

        self.logger.debug('Training triage network...')

        with tf.Session() as sess:

            init_op = tf.global_variables_initializer()
            sess.run(init_op)

            pbar = trange(self.n_iter)

            for i in pbar:

                idx_batch = np.random.choice(n_data,
                                             self.n_batch,
                                             replace=False)

                res = sess.run([train_step, regularized_loss],
                               feed_dict={
                                   x_tf: self.x_train[idx_batch],
                                   y_tf: self.y_train[idx_batch]
                               })

                if i % 100 == 0:
                    # compute validation loss and metrics
                    output = sess.run({'val loss': regularized_loss},
                                      feed_dict={
                                          x_tf: self.x_test,
                                          y_tf: self.y_test
                                      })
                    pbar.set_description('Tr loss: %s, '
                                         'Val loss: %s' %
                                         (res[1], output['val loss']))

            self.logger.debug('Saving network: %s', self.path_to_model)
            saver.save(sess, self.path_to_model)

        path_to_params = change_extension(self.path_to_model, 'yaml')
        self.logger.debug('Saving network parameters: %s', path_to_params)

        params = dict(filters_size=self.filters_size,
                      waveform_length=self.waveform_length,
                      n_neighbors=self.n_neighbors,
                      name=self.model_name)

        # compute metrics (print them and return them)
        metrics = self._evaluate()

        params.update(metrics)

        # save parameters to disk
        self._save_params(path=path_to_params, params=params)

        if save_test_set:
            self._save_test_set()

        return params
예제 #14
0
    def fit(self, x_train, y_train):
        """
        Trains the neural network detector for spike detection

        Parameters:
        -----------
        x_train: np.array
            [number of training data, temporal length, number of channels]
            augmented training data consisting of
            isolated spikes, noise and misaligned spikes.
        y_train: np.array
            [number of training data] label for x_train. '1' denotes presence
            of an isolated spike and '0' denotes
            the presence of a noise data or misaligned spike.
        path_to_model: string
            name of the .ckpt to be saved
        """
        ######################
        # Loading parameters #
        ######################

        logger = logging.getLogger(__name__)

        # get parameters
        n_data, waveform_length_train, n_neighbors_train = x_train.shape

        if self.waveform_length != waveform_length_train:
            raise ValueError('waveform length from network ({}) does not '
                             'match training data ({})'
                             .format(self.waveform_length,
                                     waveform_length_train))

        if self.n_neighbors != n_neighbors_train:
            raise ValueError('number of n_neighbors from network ({}) does '
                             'not match training data ({})'
                             .format(self.n_neigh,
                                     n_neighbors_train))

        ####################
        # Building network #
        ####################

        # x and y input tensors
        x_tf = tf.placeholder("float", [self.n_batch, self.waveform_length,
                                        self.n_neighbors])
        y_tf = tf.placeholder("float", [self.n_batch])

        input_tf = tf.expand_dims(x_tf, -1)

        vars_dict, layer11 = (NeuralNetDetector
                              ._make_network(input_tf,
                                             self.waveform_length,
                                             self.filters_size,
                                             self.n_neighbors,
                                             padding='VALID'))

        W2 = vars_dict['W2']
        b2 = vars_dict['b2']

        # third layer: spatial convolution
        o_layer = tf.squeeze(conv2d_VALID(layer11, W2) + b2)

        ##########################
        # Optimization objective #
        ##########################

        # cross entropy
        _ = tf.nn.sigmoid_cross_entropy_with_logits(logits=o_layer,
                                                    labels=y_tf)
        cross_entropy = tf.reduce_mean(_)

        weights = tf.trainable_variables()

        # regularization term
        l2_regularizer = (tf.contrib.layers
                          .l2_regularizer(scale=self.l2_reg_scale))

        regularization = tf.contrib.layers.apply_regularization(l2_regularizer,
                                                                weights)

        regularized_loss = cross_entropy + regularization

        # train step
        train_step = (tf.train.AdamOptimizer(self.train_step_size)
                        .minimize(regularized_loss))

        ############
        # Training #
        ############

        # saver
        saver = tf.train.Saver(vars_dict)
        logger.debug('Training detector network...')

        with tf.Session() as sess:

            init_op = tf.global_variables_initializer()
            sess.run(init_op)

            pbar = trange(self.n_iter)

            for i in pbar:

                # sample n_batch observations from 0, ..., n_data
                idx_batch = np.random.choice(n_data, self.n_batch,
                                             replace=False)

                res = sess.run([train_step, regularized_loss],
                               feed_dict={x_tf: x_train[idx_batch],
                                          y_tf: y_train[idx_batch]})

                if i % 100 == 0:
                    pbar.set_description('Loss: %s' % res[1])

            logger.debug('Saving network: %s', self.path_to_model)
            saver.save(sess, self.path_to_model)

            # estimate tp and fp with a sample
            idx_batch = np.random.choice(n_data, self.n_batch, replace=False)

            output = sess.run(o_layer, feed_dict={x_tf: x_train[idx_batch]})
            y_test = y_train[idx_batch]

            tp = np.mean(output[y_test == 1] > 0)
            fp = np.mean(output[y_test == 0] > 0)

            logger.debug('Approximate training true positive rate: '
                         + str(tp) + ', false positive rate: ' + str(fp))

        path_to_params = change_extension(self.path_to_model, 'yaml')

        logger.debug('Saving network parameters: %s', path_to_params)
        save_detect_network_params(filters_size=self.filters_size,
                                   waveform_length=self.waveform_length,
                                   n_neighbors=self.n_neighbors,
                                   output_path=path_to_params)
예제 #15
0
    def fit(self, x_train, y_train, test_size=0.3, save_test_set=False):
        """
        Trains the neural network detector for spike detection

        Parameters
        ----------
        x_train: np.array
            [number of training data, temporal length, number of channels]
            augmented training data consisting of
            isolated spikes, noise and misaligned spikes.
        y_train: np.array
            [number of training data] label for x_train. '1' denotes presence
            of an isolated spike and '0' denotes
            the presence of a noise data or misaligned spike.
        test_size: float, optional
            Proportion of the training set to be used, data is shuffled before
            splitting, defaults to 0.3

        Returns
        -------
        dict
            Dictionary with network parameters and metrics
        """
        logger = logging.getLogger(__name__)

        #####################
        # Splitting dataset #
        #####################

        (self.x_train, self.x_test, self.y_train,
         self.y_test) = train_test_split(x_train, y_train, test_size=test_size)

        ######################
        # Loading parameters #
        ######################

        # get parameters
        n_data, waveform_length_train, n_neighbors_train = self.x_train.shape
        self._validate_dimensions(waveform_length_train, n_neighbors_train)

        ##########################
        # Optimization objective #
        ##########################

        # cross entropy
        _ = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.o_layer_tr,
                                                    labels=self.y_tf_tr)
        cross_entropy = tf.reduce_mean(_)

        weights = tf.trainable_variables()

        # regularization term
        l2_regularizer = (tf.contrib.layers.l2_regularizer(
            scale=self.l2_reg_scale))

        regularization = tf.contrib.layers.apply_regularization(
            l2_regularizer, weights)

        regularized_loss = cross_entropy + regularization

        # train step
        train_step = (tf.train.AdamOptimizer(
            self.train_step_size).minimize(regularized_loss))

        ############
        # Training #
        ############

        # saver
        saver = tf.train.Saver(self.vars_dict)
        logger.debug('Training detector network...')

        with tf.Session() as sess:

            init_op = tf.global_variables_initializer()
            sess.run(init_op)

            pbar = trange(self.n_iter)

            for i in pbar:

                # sample n_batch observations from 0, ..., n_data
                idx_batch = np.random.choice(n_data,
                                             self.n_batch,
                                             replace=False)

                x_train_batch = self.x_train[idx_batch]
                y_train_batch = self.y_train[idx_batch]

                # run a training step and compute training loss
                res = sess.run([train_step, regularized_loss],
                               feed_dict={
                                   self.x_tf_tr: x_train_batch,
                                   self.y_tf_tr: y_train_batch
                               })

                if i % 100 == 0:
                    # compute validation loss and metrics
                    output = sess.run({'val loss': regularized_loss},
                                      feed_dict={
                                          self.x_tf_tr: self.x_test,
                                          self.y_tf_tr: self.y_test
                                      })

                    pbar.set_description('Tr loss: %s, '
                                         'Val loss: %s' %
                                         (res[1], output['val loss']))

            logger.debug('Saving network: %s', self.path_to_model)
            saver.save(sess, self.path_to_model)

        path_to_params = change_extension(self.path_to_model, 'yaml')

        logger.debug('Saving network parameters: %s', path_to_params)

        params = dict(filters_size=self.filters_size,
                      waveform_length=self.waveform_length,
                      n_neighbors=self.n_neighbors,
                      name=self.model_name)

        # compute metrics (print them and return them)
        metrics = self._evaluate()

        params.update(metrics)

        # save parameters to disk
        self._save_params(path=path_to_params, params=params)

        if save_test_set:
            self._save_test_set()

        return params