def classify(ctx, config, algo, job_number, total_jobs, resume): cfg = parse_config_file(config) df = csvfile_to_dataframe(cfg['dataset']['input_file'], cfg['dataset']['date_format']) nrow = get_image_attribute(df['filename'][0])[0] classifier = joblib.load(algo) # Split into lines and classify job_lines = distribute_jobs(job_number, total_jobs, nrow) logger.debug('Responsible for lines: {l}'.format(l=job_lines)) start_time = time.time() logger.info('Starting to run lines') for job_line in job_lines: filename = get_output_name(cfg['dataset'], job_line) if not os.path.exists(filename): logger.warning('No model result found for line {l} ' '(file {f})'.format(l=job_line, f=filename)) pass if resume and try_resume(filename): logger.debug('Already processed line {l}'.format(l=job_line)) continue logger.debug('Classifying line {l}'.format(l=job_line)) classify_line(filename, classifier) logger.debug('Completed {n} lines in {m} minutes'.format( n=len(job_lines), m=round((time.time() - start_time) / 60.0, 2)) )
def line(ctx, config, job_number, total_jobs, resume, check_cache, do_not_run, verbose_yatsm): if verbose_yatsm: logger_algo.setLevel(logging.DEBUG) # Parse config cfg = parse_config_file(config) if ('phenology' in cfg and cfg['phenology'].get('enable')) and not pheno: click.secho('Could not import yatsm.phenology but phenology metrics ' 'are requested', fg='red') click.secho('Error: %s' % pheno_exception, fg='red') raise click.Abort() # Make sure output directory exists and is writable output_dir = cfg['dataset']['output'] try: os.makedirs(output_dir) except OSError as e: # File exists if e.errno == 17: pass elif e.errno == 13: click.secho('Cannot create output directory %s' % output_dir, fg='red') raise click.Abort() if not os.access(output_dir, os.W_OK): click.secho('Cannot write to output directory %s' % output_dir, fg='red') raise click.Abort() # Test existence of cache directory read_cache, write_cache = test_cache(cfg['dataset']) logger.info('Job {i} of {n} - using config file {f}'.format(i=job_number, n=total_jobs, f=config)) df = csvfile_to_dataframe(cfg['dataset']['input_file'], cfg['dataset']['date_format']) df['image_ID'] = get_image_IDs(df['filename']) # Get attributes of one of the images nrow, ncol, nband, dtype = get_image_attribute(df['filename'][0]) # Calculate the lines this job ID works on job_lines = distribute_jobs(job_number, total_jobs, nrow) logger.debug('Responsible for lines: {l}'.format(l=job_lines)) # Calculate X feature input dates = np.asarray(df['date']) kws = {'x': dates} kws.update(df.to_dict()) X = patsy.dmatrix(cfg['YATSM']['design_matrix'], kws) cfg['YATSM']['design'] = X.design_info.column_name_indexes # Form YATSM class arguments fit_indices = np.arange(cfg['dataset']['n_bands']) if cfg['dataset']['mask_band'] is not None: fit_indices = fit_indices[:-1] if cfg['YATSM']['reverse']: X = np.flipud(X) # Create output metadata to save md = { 'YATSM': cfg['YATSM'], cfg['YATSM']['algorithm']: cfg[cfg['YATSM']['algorithm']] } if cfg['phenology']['enable']: md.update({'phenology': cfg['phenology']}) # Begin process start_time_all = time.time() for line in job_lines: out = get_output_name(cfg['dataset'], line) if resume: try: np.load(out) except: pass else: logger.debug('Already processed line %s' % line) continue logger.debug('Running line %s' % line) start_time = time.time() Y = read_line(line, df['filename'], df['image_ID'], cfg['dataset'], ncol, nband, dtype, read_cache=read_cache, write_cache=write_cache, validate_cache=False) if do_not_run: continue if cfg['YATSM']['reverse']: Y = np.fliplr(Y) output = [] for col in np.arange(Y.shape[-1]): _Y = Y.take(col, axis=2) # Mask idx_mask = cfg['dataset']['mask_band'] - 1 valid = cyprep.get_valid_mask( _Y, cfg['dataset']['min_values'], cfg['dataset']['max_values']).astype(bool) valid *= np.in1d(_Y.take(idx_mask, axis=0), cfg['dataset']['mask_values'], invert=True).astype(np.bool) _Y = np.delete(_Y, idx_mask, axis=0)[:, valid] _X = X[valid, :] _dates = dates[valid] # Run model cls = cfg['YATSM']['algorithm_cls'] algo_cfg = cfg[cfg['YATSM']['algorithm']] yatsm = cls(lm=cfg['YATSM']['prediction_object'], **algo_cfg.get('init', {})) yatsm.px = col yatsm.py = line try: yatsm.fit(_X, _Y, _dates, **algo_cfg.get('fit', {})) except TSLengthException: continue if yatsm.record is None or len(yatsm.record) == 0: continue # Postprocess if cfg['YATSM'].get('commission_alpha'): yatsm.record = postprocess.commission_test( yatsm, cfg['YATSM']['commission_alpha']) for prefix, lm in zip(cfg['YATSM']['refit']['prefix'], cfg['YATSM']['refit']['prediction_object']): yatsm.record = postprocess.refit_record(yatsm, prefix, lm, keep_regularized=True) if cfg['phenology']['enable']: pcfg = cfg['phenology'] ltm = pheno.LongTermMeanPhenology(**pcfg.get('init', {})) yatsm.record = ltm.fit(yatsm, **pcfg.get('fit', {})) output.extend(yatsm.record) logger.debug(' Saving YATSM output to %s' % out) np.savez(out, record=np.array(output), version=__version__, metadata=md) run_time = time.time() - start_time logger.debug('Line %s took %ss to run' % (line, run_time)) logger.info('Completed {n} lines in {m} minutes'.format( n=len(job_lines), m=round((time.time() - start_time_all) / 60.0, 2)))
def annual(row1, row2, pct): NDV = -9999 # EXAMPLE IMAGE for dimensions, map creation #example_img_fn = '/projectnb/landsat/users/valpasq/LCMS/stacks/p035r032/images/example_img' example_img_fn = '/projectnb/landsat/projects/Massachusetts/p012r031/images/example_img' # YATSM CONFIG FILE #config_file = '/projectnb/landsat/users/valpasq/LCMS/stacks/p035r032/p035r032_config_LCMS.yaml' config_file = '/projectnb/landsat/projects/Massachusetts/p012r031/p012r031_config_pixel.yaml' #WRS2 = 'p027r027' WRS2 = 'p012r031' # Up front -- declare hard coded dataset attributes (for now) BAND_NAMES = [ 'blue', 'green', 'red', 'nir', 'swir1', 'swir2', 'therm', 'tcb', 'tcg', 'tcw', 'fmask' ] n_band = len(BAND_NAMES) - 1 col_names = [ 'date', 'blue', 'green', 'red', 'nir', 'swir1', 'swir2', 'therm', 'tcb', 'tcg', 'tcw' ] dtype = np.int16 years = range(1985, 2016, 1) length = 33 # number of years # Read in example image example_img = read_image(example_img_fn) py_dim = example_img.shape[0] px_dim = example_img.shape[1] print('Shape of example image:') print(example_img.shape) # Read in and parse config file cfg = yaml.load(open(config_file)) # List to np.ndarray so it works with cyprep.get_valid_mask cfg['dataset']['min_values'] = np.asarray(cfg['dataset']['min_values']) cfg['dataset']['max_values'] = np.asarray(cfg['dataset']['max_values']) # Get files list df = csvfile_to_dataframe(cfg['dataset']['input_file'], \ date_format=cfg['dataset']['date_format']) # Get dates for image stack df['image_ID'] = get_image_IDs(df['filename']) df['x'] = df['date'] dates = df['date'].values # Initialize arrays for storing stats mean_TCB = np.zeros((py_dim, px_dim, length)) mean_TCG = np.zeros((py_dim, px_dim, length)) mean_TCW = np.zeros((py_dim, px_dim, length)) min_val_TCB = np.zeros((py_dim, px_dim, length)) min_val_TCG = np.zeros((py_dim, px_dim, length)) min_val_TCW = np.zeros((py_dim, px_dim, length)) min_idx_TCB = np.zeros((py_dim, px_dim, length)) min_idx_TCG = np.zeros((py_dim, px_dim, length)) min_idx_TCW = np.zeros((py_dim, px_dim, length)) max_val_TCB = np.zeros((py_dim, px_dim, length)) max_val_TCG = np.zeros((py_dim, px_dim, length)) max_val_TCW = np.zeros((py_dim, px_dim, length)) max_idx_TCB = np.zeros((py_dim, px_dim, length)) max_idx_TCG = np.zeros((py_dim, px_dim, length)) max_idx_TCW = np.zeros((py_dim, px_dim, length)) for py in range(row1, row2): # row iterator print('Working on row {py}'.format(py=py)) sys.stdout.flush() start_time = time.time() Y_row = read_line( py, df['filename'], df['image_ID'], cfg['dataset'], px_dim, n_band + 1, dtype, # +1 for now for Fmask read_cache=False, write_cache=False, validate_cache=False) for px in range(0, px_dim): # column iterator Y = Y_row.take(px, axis=2) if (Y[0:6] == NDV).mean() > 0.3: continue else: # process time series for disturbance events # Mask based on physical constraints and Fmask valid = cyprep.get_valid_mask( \ Y, \ cfg['dataset']['min_values'], \ cfg['dataset']['max_values']).astype(bool) # Apply mask band idx_mask = cfg['dataset']['mask_band'] - 1 valid *= np.in1d(Y.take(idx_mask, axis=0), \ cfg['dataset']['mask_values'], \ invert=True).astype(np.bool) # Mask time series using fmask result Y_fmask = np.delete(Y, idx_mask, axis=0)[:, valid] dates_fmask = dates[valid] # Apply multi-temporal mask (modified tmask) # Step 1. mask where green > 3 stddev from mean (fmasked) green multitemp1_fmask = np.where( Y_fmask[1] < (np.mean(Y_fmask[1]) + np.std(Y_fmask[1]) * 3)) dates_fmask = dates_fmask[multitemp1_fmask[0]] Y_fmask = Y_fmask[:, multitemp1_fmask[0]] # Step 2. mask where swir < 3 std devfrom mean (fmasked) SWIR multitemp2_fmask = np.where( Y_fmask[4] > (np.mean(Y_fmask[4]) - np.std(Y_fmask[4]) * 3)) dates_fmask = dates_fmask[multitemp2_fmask[0]] Y_fmask = Y_fmask[:, multitemp2_fmask[0]] # convert time from ordinal to dates dt_dates_fmask = np.array( [dt.datetime.fromordinal(d) for d in dates_fmask]) # Create dataframes for analysis # Step 1. reshape data shp_ = dt_dates_fmask.shape[0] dt_dates_fmask_csv = dt_dates_fmask.reshape(shp_, 1) Y_fmask_csv = np.transpose(Y_fmask) data_fmask = np.concatenate([dt_dates_fmask_csv, Y_fmask_csv], axis=1) # Step 2. create dataframe data_fmask_df = pd.DataFrame(data_fmask, columns=col_names) # convert reflectance to numeric type data_fmask_df[BAND_NAMES[0:10]] = data_fmask_df[ BAND_NAMES[0:10]].astype(int) # Group observations by year to generate annual TS year_group_fmask = data_fmask_df.groupby( data_fmask_df.date.dt.year) # get years in time series years_fmask = np.asarray(year_group_fmask.groups.keys()) years_fmask = years_fmask.astype(int) # TODO: FIX THIS!!!!!!! #import pdb; pdb.set_trace() month_group_fmask = data_fmask_df.groupby( [data_fmask_df.date.dt.year, data_fmask_df.date.dt.month]).max() month_groups = month_group_fmask.groupby( month_group_fmask.date.dt.year) # Calculate number of observations nobs = year_group_fmask['tcb'].count() ### TC Brightness # Calculate mean annual TCB TCB_mean = year_group_fmask['tcb'].mean() if pct == False: TCB_max_val = month_groups['tcb'].max() TCB_max_idx = month_groups['tcb'].idxmax() TCB_min_val = month_groups['tcb'].min() TCB_min_idx = month_groups['tcb'].idxmin() else: # percentile clip TCB_max = year_group_fmask['tcb'].quantile([pct2]) TCB_min = year_group_fmask['tcb'].quantile([pct1]) ### TC Greenness # Calculate mean annual TCG TCG_mean = year_group_fmask['tcg'].mean() if pct == False: TCG_max_val = month_groups['tcg'].max() TCG_max_idx = month_groups['tcg'].idxmax() TCG_min_val = month_groups['tcg'].min() TCG_min_idx = month_groups['tcg'].idxmin() else: # percentile clip TCG_max = year_group_fmask['tcg'].quantile([pct2]) TCG_min = year_group_fmask['tcg'].quantile([pct1]) ### TC Wetness # Calculate mean annual TCW TCW_mean = year_group_fmask['tcw'].mean() if pct == False: TCW_max_val = month_groups['tcw'].max() TCW_max_idx = month_groups['tcw'].idxmax() TCW_min_val = month_groups['tcw'].min() TCW_min_idx = month_groups['tcw'].idxmin() else: # percentile clip TCW_max = year_group_fmask['tcw'].quantile([pct2]) TCW_min = year_group_fmask['tcw'].quantile([pct1]) for index, year in enumerate(years): if year in TCB_mean.index: mean_TCB[py, px, index] = TCB_mean[year] mean_TCG[py, px, index] = TCG_mean[year] mean_TCW[py, px, index] = TCW_mean[year] min_val_TCB[py, px, index] = TCB_min_val[year] min_val_TCG[py, px, index] = TCG_min_val[year] min_val_TCW[py, px, index] = TCW_min_val[year] max_val_TCB[py, px, index] = TCB_max_val[year] max_val_TCG[py, px, index] = TCG_max_val[year] max_val_TCW[py, px, index] = TCW_max_val[year] min_idx_TCB[py, px, index] = TCB_min_idx[year][1] min_idx_TCG[py, px, index] = TCG_min_idx[year][1] min_idx_TCW[py, px, index] = TCW_min_idx[year][1] max_idx_TCB[py, px, index] = TCB_max_idx[year][1] max_idx_TCG[py, px, index] = TCG_max_idx[year][1] max_idx_TCW[py, px, index] = TCW_max_idx[year][1] run_time = time.time() - start_time print('Line {line} took {run_time}s to run'.format(line=py, run_time=run_time)) sys.stdout.flush() print('Statistics complete') print('Writing results to raster...') start_time = time.time() # Output map for each year in_ds = gdal.Open(example_img_fn, gdal.GA_ReadOnly) for index, year in enumerate(years): condition_fn = '/projectnb/landsat/users/valpasq/LCMS/dataviz/results/{WRS2}/mean/{WRS2}_ST-BGW_mean_{year}_{row1}-{row2}.tif'.format( WRS2=WRS2, year=year, row1=row1, row2=row2) out_driver = gdal.GetDriverByName("GTiff") out_ds = out_driver.Create( condition_fn, example_img.shape[1], # x size example_img.shape[0], # y size 3, # number of bands gdal.GDT_Int32) out_ds.SetProjection(in_ds.GetProjection()) out_ds.SetGeoTransform(in_ds.GetGeoTransform()) out_ds.GetRasterBand(1).WriteArray(mean_TCB[:, :, index]) out_ds.GetRasterBand(1).SetNoDataValue(0) out_ds.GetRasterBand(1).SetDescription('Mean Annual TC Brightness') out_ds.GetRasterBand(2).WriteArray(mean_TCG[:, :, index]) out_ds.GetRasterBand(2).SetNoDataValue(0) out_ds.GetRasterBand(2).SetDescription('Mean Annual TC Greenness') out_ds.GetRasterBand(3).WriteArray(mean_TCW[:, :, index]) out_ds.GetRasterBand(3).SetNoDataValue(0) out_ds.GetRasterBand(3).SetDescription('Mean Annual TC Wetness') out_ds = None condition_fn = '/projectnb/landsat/users/valpasq/LCMS/dataviz/results/{WRS2}/min/{WRS2}_ST-BGW_min_val_{year}_{row1}-{row2}.tif'.format( WRS2=WRS2, year=year, row1=row1, row2=row2) out_driver = gdal.GetDriverByName("GTiff") out_ds = out_driver.Create( condition_fn, example_img.shape[1], # x size example_img.shape[0], # y size 3, # number of bands gdal.GDT_Int32) out_ds.SetProjection(in_ds.GetProjection()) out_ds.SetGeoTransform(in_ds.GetGeoTransform()) out_ds.GetRasterBand(1).WriteArray(min_val_TCB[:, :, index]) out_ds.GetRasterBand(1).SetNoDataValue(0) out_ds.GetRasterBand(1).SetDescription('Minimum Annual TC Brightness') out_ds.GetRasterBand(2).WriteArray(min_val_TCG[:, :, index]) out_ds.GetRasterBand(2).SetNoDataValue(0) out_ds.GetRasterBand(2).SetDescription('Minimum Annual TC Greenness') out_ds.GetRasterBand(3).WriteArray(min_val_TCW[:, :, index]) out_ds.GetRasterBand(3).SetNoDataValue(0) out_ds.GetRasterBand(3).SetDescription('Minimum Annual TC Wetness') out_ds = None condition_fn = '/projectnb/landsat/users/valpasq/LCMS/dataviz/results/{WRS2}/max/{WRS2}_ST-BGW_max_val_{year}_{row1}-{row2}.tif'.format( WRS2=WRS2, year=year, row1=row1, row2=row2) out_driver = gdal.GetDriverByName("GTiff") out_ds = out_driver.Create( condition_fn, example_img.shape[1], # x size example_img.shape[0], # y size 3, # number of bands gdal.GDT_Int32) out_ds.SetProjection(in_ds.GetProjection()) out_ds.SetGeoTransform(in_ds.GetGeoTransform()) out_ds.GetRasterBand(1).WriteArray(max_val_TCB[:, :, index]) out_ds.GetRasterBand(1).SetNoDataValue(0) out_ds.GetRasterBand(1).SetDescription('Maximum Annual TC Brightness') out_ds.GetRasterBand(2).WriteArray(max_val_TCG[:, :, index]) out_ds.GetRasterBand(2).SetNoDataValue(0) out_ds.GetRasterBand(2).SetDescription('Maximum Annual TC Greenness') out_ds.GetRasterBand(3).WriteArray(max_val_TCW[:, :, index]) out_ds.GetRasterBand(3).SetNoDataValue(0) out_ds.GetRasterBand(3).SetDescription('Maximum Annual TC Wetness') out_ds = None condition_fn = '/projectnb/landsat/users/valpasq/LCMS/dataviz/results/{WRS2}/min/{WRS2}_ST-BGW_min_mon_{year}_{row1}-{row2}.tif'.format( WRS2=WRS2, year=year, row1=row1, row2=row2) out_driver = gdal.GetDriverByName("GTiff") out_ds = out_driver.Create( condition_fn, example_img.shape[1], # x size example_img.shape[0], # y size 3, # number of bands gdal.GDT_Int32) out_ds.SetProjection(in_ds.GetProjection()) out_ds.SetGeoTransform(in_ds.GetGeoTransform()) out_ds.GetRasterBand(1).WriteArray(min_idx_TCB[:, :, index]) out_ds.GetRasterBand(1).SetNoDataValue(0) out_ds.GetRasterBand(1).SetDescription('Minimum Annual TC Brightness') out_ds.GetRasterBand(2).WriteArray(min_idx_TCG[:, :, index]) out_ds.GetRasterBand(2).SetNoDataValue(0) out_ds.GetRasterBand(2).SetDescription('Minimum Annual TC Greenness') out_ds.GetRasterBand(3).WriteArray(min_idx_TCW[:, :, index]) out_ds.GetRasterBand(3).SetNoDataValue(0) out_ds.GetRasterBand(3).SetDescription('Minimum Annual TC Wetness') out_ds = None condition_fn = '/projectnb/landsat/users/valpasq/LCMS/dataviz/results/{WRS2}/max/{WRS2}_ST-BGW_max_mon_{year}_{row1}-{row2}.tif'.format( WRS2=WRS2, year=year, row1=row1, row2=row2) out_driver = gdal.GetDriverByName("GTiff") out_ds = out_driver.Create( condition_fn, example_img.shape[1], # x size example_img.shape[0], # y size 3, # number of bands gdal.GDT_Int32) out_ds.SetProjection(in_ds.GetProjection()) out_ds.SetGeoTransform(in_ds.GetGeoTransform()) out_ds.GetRasterBand(1).WriteArray(max_idx_TCB[:, :, index]) out_ds.GetRasterBand(1).SetNoDataValue(0) out_ds.GetRasterBand(1).SetDescription('Maximum Annual TC Brightness') out_ds.GetRasterBand(2).WriteArray(max_idx_TCG[:, :, index]) out_ds.GetRasterBand(2).SetNoDataValue(0) out_ds.GetRasterBand(2).SetDescription('Maximum Annual TC Greenness') out_ds.GetRasterBand(3).WriteArray(max_idx_TCW[:, :, index]) out_ds.GetRasterBand(3).SetNoDataValue(0) out_ds.GetRasterBand(3).SetDescription('Maximum Annual TC Wetness') out_ds = None run_time = time.time() - start_time print('Rasters took {run_time}s to export'.format(run_time=run_time)) sys.stdout.flush()
def pixel(ctx, config, px, py, band, plot, ylim, style, cmap, embed, seed, algo_kw): # Set seed np.random.seed(seed) # Convert band to index band -= 1 # Get colormap if hasattr(palettable.colorbrewer, cmap): mpl_cmap = getattr(palettable.colorbrewer, cmap).mpl_colormap elif hasattr(palettable.cubehelix, cmap): mpl_cmap = getattr(palettable.cubehelix, cmap).mpl_colormap elif hasattr(palettable.wesanderson, cmap): mpl_cmap = getattr(palettable.wesanderson, cmap).mpl_colormap else: raise click.Abort('Cannot find specified colormap in `palettable`') # Parse config cfg = parse_config_file(config) # Apply algorithm overrides revalidate = False for kw in algo_kw: for cfg_key in cfg: if kw in cfg[cfg_key]: # Parse as YAML for type conversions used in config parser value = yaml.load(algo_kw[kw]) print('Overriding cfg[%s][%s]=%s with %s' % (cfg_key, kw, cfg[cfg_key][kw], value)) cfg[cfg_key][kw] = value revalidate = True if revalidate: cfg = convert_config(cfg) # Locate and fetch attributes from data df = csvfile_to_dataframe(cfg['dataset']['input_file'], date_format=cfg['dataset']['date_format']) df['image_ID'] = get_image_IDs(df['filename']) # Setup X/Y kws = {'x': df['date']} kws.update(df.to_dict()) X = patsy.dmatrix(cfg['YATSM']['design_matrix'], kws) design_info = X.design_info Y = read_pixel_timeseries(df['filename'], px, py) fit_indices = np.arange(cfg['dataset']['n_bands']) if cfg['dataset']['mask_band'] is not None: fit_indices = fit_indices[:-1] # Mask out of range data idx_mask = cfg['dataset']['mask_band'] - 1 valid = cyprep.get_valid_mask(Y, cfg['dataset']['min_values'], cfg['dataset']['max_values']).astype(np.bool) valid *= np.in1d(Y[idx_mask, :], cfg['dataset']['mask_values'], invert=True).astype(np.bool) # Apply mask Y = np.delete(Y, idx_mask, axis=0)[:, valid] X = X[valid, :] dates = np.array([dt.datetime.fromordinal(d) for d in df['date'][valid]]) # Plot before fitting with plt.xkcd() if style == 'xkcd' else mpl.style.context(style): for _plot in plot: if _plot == 'TS': plot_TS(dates, Y[band, :]) elif _plot == 'DOY': plot_DOY(dates, Y[band, :], mpl_cmap) elif _plot == 'VAL': plot_VAL(dates, Y[band, :], mpl_cmap) if ylim: plt.ylim(ylim) plt.title('Timeseries: px={px} py={py}'.format(px=px, py=py)) plt.ylabel('Band {b}'.format(b=band + 1)) if embed and has_embed: IPython_embed() plt.tight_layout() plt.show() # Eliminate config parameters not algorithm and fit model yatsm = cfg['YATSM']['algorithm_cls'](lm=cfg['YATSM']['prediction_object'], **cfg[cfg['YATSM']['algorithm']]) yatsm.px = px yatsm.py = py yatsm.fit(X, Y, np.asarray(df['date'][valid])) # Plot after predictions with plt.xkcd() if style == 'xkcd' else mpl.style.context(style): for _plot in plot: if _plot == 'TS': plot_TS(dates, Y[band, :]) elif _plot == 'DOY': plot_DOY(dates, Y[band, :], mpl_cmap) elif _plot == 'VAL': plot_VAL(dates, Y[band, :], mpl_cmap) if ylim: plt.ylim(ylim) plt.title('Timeseries: px={px} py={py}'.format(px=px, py=py)) plt.ylabel('Band {b}'.format(b=band + 1)) plot_results(band, cfg['YATSM'], yatsm, plot_type=_plot) if embed and has_embed: IPython_embed() plt.tight_layout() plt.show()
def cache(ctx, config, job_number, total_jobs, update_pattern, interlace): cfg = parse_config_file(config) if not os.path.isdir(cfg['dataset']['cache_line_dir']): os.makedirs(cfg['dataset']['cache_line_dir']) df = csvfile_to_dataframe(cfg['dataset']['input_file'], cfg['dataset']['date_format']) df['image_IDs'] = get_image_IDs(df['filename']) nrow, ncol, nband, dtype = reader.get_image_attribute(df['filename'][0]) # Determine lines to work on job_lines = distribute_jobs(job_number, total_jobs, nrow, interlaced=interlace) logger.debug('Responsible for lines: {l}'.format(l=job_lines)) # Determine file reader if cfg['dataset']['use_bip_reader']: logger.debug('Reading in data from disk using BIP reader') image_reader = reader.read_row_BIP image_reader_kwargs = {'size': (ncol, nband), 'dtype': dtype} else: logger.debug('Reading in data from disk using GDAL') image_reader = reader.read_row_GDAL image_reader_kwargs = {} # Attempt to update cache files previous_cache = None if update_pattern: previous_cache = fnmatch.filter( os.listdir(cfg['dataset']['cache_line_dir']), update_pattern) if not previous_cache: logger.warning('Could not find cache files to update with pattern ' '%s' % update_pattern) else: logger.debug('Found %s previously cached files to update' % len(previous_cache)) for job_line in job_lines: cache_filename = get_line_cache_name(cfg['dataset'], len(df), job_line, nband) logger.debug('Caching line {l} to {f}'.format( l=job_line, f=cache_filename)) start_time = time.time() # Find matching cache file update = False if previous_cache: pattern = get_line_cache_pattern(job_line, nband, regex=False) potential = fnmatch.filter(previous_cache, pattern) if not potential: logger.info('Found zero previous cache files for ' 'line {l}'.format(l=job_line)) elif len(potential) > 1: logger.info('Found more than one previous cache file for ' 'line {l}. Keeping first'.format(l=job_line)) update = os.path.join(cfg['dataset']['cache_line_dir'], potential[0]) else: update = os.path.join(cfg['dataset']['cache_line_dir'], potential[0]) logger.info('Updating from cache file {f}'.format(f=update)) if update: update_cache_file(df['filename'], df['image_IDs'], update, cache_filename, job_line, image_reader, image_reader_kwargs) else: if cfg['dataset']['use_bip_reader']: # Use BIP reader logger.debug('Reading in data from disk using BIP reader') Y = reader.read_row_BIP(df['filename'], job_line, (ncol, nband), dtype) else: # Read in data just using GDAL logger.debug('Reading in data from disk using GDAL') Y = reader.read_row_GDAL(df['filename'], job_line) write_cache_file(cache_filename, Y, df['image_IDs']) logger.debug('Took {s}s to cache the data'.format( s=round(time.time() - start_time, 2)))