# instantiate the visualizer with the Covariance ranking algorithm visualizer = Rank2D(features=num_features, algorithm='pearson') visualizer.fit(X) # Fit the data to the visualizer visualizer.transform(X) # Transform the data visualizer.poof(outpath="d://pcoords1.png") # Draw/show/poof the data plt.show() # Step 9: Compare variables against Survived and Not Survived # set up the figure size # %matplotlib inline plt.rcParams['figure.figsize'] = (15, 7) plt.rcParams['font.size'] = 50 # setup the color for yellowbrick visulizer from yellowbrick.style import set_palette set_palette('sns_bright') # import packages from yellowbrick.features import ParallelCoordinates # Specify the features of interest and the classes of the target classes = ['Not-survived', 'Survived'] num_features = ['Age', 'SibSp', 'Parch', 'Fare'] # copy data to a new dataframe data_norm = data.copy() # normalize data to 0-1 range for feature in num_features: data_norm[feature] = (data[feature] - data[feature].mean(skipna=True)) / ( data[feature].max(skipna=True) - data[feature].min(skipna=True)) # Extract the numpy arrays from the data frame
from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC import statsmodels.api as sm from imblearn.over_sampling import SMOTE from collections import Counter from yellowbrick.classifier import ROCAUC from yellowbrick.classifier import ConfusionMatrix from yellowbrick.classifier import ClassificationReport from yellowbrick.style.palettes import PALETTES, SEQUENCES, color_palette color_palette(palette='flatui', n_colors=8) from yellowbrick.style import set_palette set_palette('pastel') pd.set_option('display.max_colwidth', -1) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) sns.set_context('talk') sns.set_style('ticks') sns.set_palette('RdBu') np.random.seed(42) import warnings warnings.filterwarnings('ignore') def SMOTE_graph(target,title,x=6,y=2): """Creates graph showing distribution of variable"""
from yellowbrick.target import FeatureCorrelation, ClassBalance from yellowbrick.classifier import ClassificationReport from yellowbrick.classifier import ClassPredictionError from yellowbrick.classifier import ConfusionMatrix from sklearn.model_selection import GridSearchCV from yellowbrick.model_selection import CVScores from yellowbrick.model_selection import ValidationCurve from yellowbrick.model_selection import LearningCurve from yellowbrick.style import set_palette set_palette('paired') class Analytics(Model): """ Class that inherits from Model class to draw the analytics of the model. Each drawing method is not described with the docstring, only those that do not draw. """ def __init__(self, model, data=None, labels=None): super().__init__(model, np.array(data), np.array(labels)) def draw_rad_viz(self): visualizer = RadViz(classes=self.le.classes_, features=self.get_feature_labels(), alpha=0.4) visualizer.fit(self.training_data, self.training_labels)
visualizerJPV.fit_transform(X, y) # Fit and transform the data # Finalize and render the figure plt.ylabel('lambda_sigma', fontsize=14) plt.xlabel('lambda_weight', fontsize=14) locationFileNameJPV = os.path.join( '/home/ak/Documents/Research/Papers/figures', str(symbols[symbolIdx]) + '_idx_' + str(idx) + 'date' + str(dateIdx) + '_label' + str(labelName) + '_jointplotViz.png') visualizerJPV.show(outpath=locationFileNameJPV) plt.show() # # Instantiate the visualizer with the Covariance ranking algorithm set_palette('sns_dark') plt.figure() visualizerR2D = Rank2D(features=features, algorithm='pearson', title=' ') visualizerR2D.fit(X, y) # Fit the data to the visualizer visualizerR2D.transform(X) # Transform the data plt.xticks(fontsize=12) plt.yticks(fontsize=12) locationFileNameR2D = os.path.join( '/home/ak/Documents/Research/Papers/figures', str(symbols[symbolIdx]) + '_idx_' + str(idx) + '_label' + str(labelName) + '_date_' + str(dateIdx) + '_pearsonCorrel.png') visualizerR2D.show(outpath=locationFileNameR2D)
from nltk.stem.wordnet import WordNetLemmatizer import gensim from gensim import corpora import string from sklearn.feature_extraction.text import CountVectorizer from yellowbrick.style import set_palette from gensim.parsing.preprocessing import remove_stopwords import snscrape.modules.twitter as sntwitter import nltk nltk.download("stopwords") nltk.download('punkt') nltk.download('wordnet') plt.rcParams['figure.figsize'] = (20.0, 20.0) plt.rc('font', size=16) set_palette('flatui') st.markdown("<meta name='image' property='og:image' content='cool.jpg'>", unsafe_allow_html=True) # Location = 'London, United Kingdom' # Distance = '200mi' #App Start def app(): st.title("Stock Tweet Analyzer 📈") st.subheader("Analyze the tweets of your favorite stocks") st.subheader("Watch me first!") video_file = open("apiUpdateVideo.webm","rb") video_bytes = video_file.read() st.video(video_bytes)