def prep_display(self, dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env('Postprocess'): t = postprocess(dets_out, w, h, visualize_lincomb=args.display_lincomb, crop_masks=args.crop, score_threshold=args.score_threshold) torch.cuda.synchronize() with timer.env('Copy'): if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][:args.top_k] classes, scores, boxes = [ x[:args.top_k].cpu().numpy() for x in t[:3] ] num_dets_to_consider = min(args.top_k, classes.shape[0]) for j in range(num_dets_to_consider): if scores[j] < args.score_threshold: num_dets_to_consider = j break if num_dets_to_consider == 0: # No detections found so just output the original image return (img_gpu * 255).byte().cpu().numpy() # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255. color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if args.display_masks and cfg.eval_mask_branch: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat([ get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider) ], dim=0) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider - 1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) img_gpu = img_gpu * inv_alph_masks.prod( dim=0) + masks_color_summand # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() if args.display_text or args.display_bboxes: str_ = "" for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1) if args.display_text: _class = cfg.dataset.class_names[classes[j]] text_str = '%s: %.2f' % ( _class, score) if args.display_scores else _class font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0] text_pt = (x1, y1 - 3) text_color = [255, 255, 255] cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1) cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) #pub = rospy.Publisher('chatter',String,queue_size=10) #rate = rospy.Rate(50) #10hz #str_ += text_str #rospy.loginfo(str_) #pub.publish(str_) #rate.sleep() return img_numpy
def prep_display( dets_out, img, h, w, cfg: YolactConfig, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str="", display_lincomb=False, ): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env("Postprocess"): save = cfg.rescore_bbox cfg.rescore_bbox = True t = postprocess(dets_out, w, h) cfg.rescore_bbox = save with timer.env("Copy"): idx = t[1].argsort(0, descending=True) # [:args.top_k] if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][idx] classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]] num_dets_to_consider = classes.shape[0] # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255.0 color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if args.display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat( [ get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider) ], dim=0, ) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[: (num_dets_to_consider - 1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand if args.display_fps: # Draw the box for the fps on the GPU font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize( fps_str, font_face, font_scale, font_thickness )[0] img_gpu[0 : text_h + 8, 0 : text_w + 8] *= 0.6 # 1 - Box alpha # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() if args.display_fps: # Draw the text on the CPU text_pt = (4, text_h + 2) text_color = [255, 255, 255] cv2.putText( img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA, ) if num_dets_to_consider == 0: return img_numpy if args.display_text or args.display_bboxes: for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1) if args.display_text: _class = cfg.dataset.class_names[classes[j]] text_str = ( "%s: %.2f" % (_class, score) if args.display_scores else _class ) font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize( text_str, font_face, font_scale, font_thickness )[0] text_pt = (x1, y1 - 3) text_color = [255, 255, 255] cv2.rectangle( img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1 ) cv2.putText( img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA, ) return img_numpy
def prep_display(self, dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, image_header=Header()): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ with torch.no_grad(): detections = Detections() if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env('Postprocess'): t = postprocess(dets_out, w, h, visualize_lincomb=args.display_lincomb, crop_masks=args.crop, score_threshold=args.score_threshold) torch.cuda.synchronize() with timer.env('Copy'): if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][:args.top_k] classes, scores, boxes = [ x[:args.top_k].cpu().numpy() for x in t[:3] ] num_dets_to_consider = min(args.top_k, classes.shape[0]) for j in range(num_dets_to_consider): if scores[j] < args.score_threshold: num_dets_to_consider = j break if num_dets_to_consider == 0: # No detections found so just output the original image return (img_gpu * 255).byte().cpu().numpy() # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255. color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if args.display_masks and cfg.eval_mask_branch: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat([ get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider) ], dim=0) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider - 1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) img_gpu = img_gpu * inv_alph_masks.prod( dim=0) + masks_color_summand # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() print("Num dets: ", num_dets_to_consider) if args.display_text or args.display_bboxes: for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 2) if args.display_text: _class = cfg.dataset.class_names[classes[j]] text_str = '%s: %.2f' % ( _class, score) if args.display_scores else _class font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize( text_str, font_face, font_scale, font_thickness)[0] text_pt = (x1, y1 - 10) text_color = [255, 255, 255] cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1) cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) det = Detection() det.box.x1 = x1 det.box.y1 = y1 det.box.x2 = x2 det.box.y2 = y2 det.class_name = _class det.score = score mask_shape = np.shape(masks[j]) #print("Shape: ", mask_shape) #mask_bb = np.squeeze(masks[j].cpu().numpy(), axis=2)[y1:y2,x1:x2] # Crop mask_bb = np.squeeze( masks[j].cpu().numpy(), axis=2)[:, :] # Every mask (1280 * 720) #print("Box: x1:", x1,", x2: ",x2,", y1: ",y1,", y2: ",y2) #print("Mask in box shape: ", np.shape(mask_bb)) mask_rs = np.reshape(mask_bb, -1) #print("New shape: ", np.shape(mask_rs)) #print("Mask:\n",mask_bb) det.mask.height = y2 - y1 det.mask.width = x2 - x1 det.mask.mask = np.array(mask_rs, dtype=bool) detections.detections.append(det) detections.header.stamp = image_header.stamp detections.header.frame_id = image_header.frame_id self.detections_pub.publish(detections) self.get_orientation_from_mask(num_dets_to_consider, img_numpy, detections, masks) try: self.image_pub.publish( self.bridge.cv2_to_imgmsg(img_numpy, "bgr8")) except CvBridgeError as e: print(e)
def prep_display(dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str=''): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env('Postprocess'): save = cfg.rescore_bbox cfg.rescore_bbox = True t = postprocess(dets_out, w, h, visualize_lincomb = args.display_lincomb, crop_masks = args.crop, score_threshold = args.score_threshold) cfg.rescore_bbox = save with timer.env('Copy'): idx = t[1].argsort(0, descending=True)[:args.top_k] if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][idx] classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]] if args.only_person: for i, _class in enumerate(classes): if _class != 0: scores[i] = -1 num_dets_to_consider = min(args.top_k, classes.shape[0]) for j in range(num_dets_to_consider): if scores[j] < args.score_threshold: num_dets_to_consider = j break # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255. color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if (args.display_masks or args.identify_people) and cfg.eval_mask_branch and num_dets_to_consider > 0: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat([get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider)], dim=0) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider-1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) if args.identify_people: # Key = original detection index. Value = person index. det_to_person_index = {} prep_silh_images = np.empty((0, 299, 299, 3)) for i in range(num_dets_to_consider): _class = cfg.dataset.class_names[classes[i]] if _class == "person": x1, y1, x2, y2 = boxes[i, :] silh_image = (img_gpu * masks[i] * 255)[y1:(y2+1), x1:(x2+1), [2, 1, 0]] numpy_silh_image = silh_image.byte().cpu().numpy() prep_silh_image, _ = data.dataset.preprocess(numpy_silh_image, None, 299) prep_silh_images = np.vstack((prep_silh_images, np.expand_dims(prep_silh_image, axis=0))) det_to_person_index[i] = prep_silh_images.shape[0] - 1 # cv2.imshow("mask", numpy_silh_image) # while cv2.waitKey(1) != ord("q"): # pass # data.dataset.show_batch(prep_silh_images, [0, 1, 2], ["prova1", "prova2", "prova3"]) # pickle.dump(prep_silh_images, open("prep_silh_images.pkl", "wb")) raw_person_preds = person_classifier.predict(prep_silh_images) person_preds = np.argmax(raw_person_preds, axis=1) person_scores = np.max(raw_person_preds, axis=1) print(person_preds, person_scores) img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand if args.display_fps: # Draw the box for the fps on the GPU font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(fps_str, font_face, font_scale, font_thickness)[0] img_gpu[0:text_h+8, 0:text_w+8] *= 0.6 # 1 - Box alpha # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() if args.display_fps: # Draw the text on the CPU text_pt = (4, text_h + 2) text_color = [255, 255, 255] cv2.putText(img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) if num_dets_to_consider == 0: return img_numpy if args.display_text or args.display_bboxes: if args.identify_people: with open("data/casia_gait/DatasetB_split_reduced/demo_class_names.txt", "r") as person_classes_file: person_classes = person_classes_file.read().splitlines() for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1) if args.display_text: _class = cfg.dataset.class_names[classes[j]] if args.identify_people and (j in det_to_person_index): person_index = det_to_person_index[j] person_pred = person_preds[person_index] _class = person_classes[person_pred] score = person_scores[person_index] text_str = '%s: %.2f' % (_class, score) if args.display_scores else _class font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0] text_pt = (x1, y1 - 3) text_color = [255, 255, 255] cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1) cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) return img_numpy