def export(self): shape = (1, 3, self.size[0], self.size[1]) yolo_gluon.export(self.net, shape, self.ctx[0], self.export_file, onnx=1, epoch=0)
def export(self): shape = (1, 3, self.size[0], self.size[1]) yolo_gluon.export(self.net, shape, self.ctx[0], self.export_folder, onnx=False, fp16=self.use_fp16)
def export(self): yolo_gluon.export( self.net, (1, 3, self.size[0], self.size[1]), self.ctx[0], self.export_folder, onnx=False, fp16=False)
bg = bg.data[0].as_in_context(ctx[0]) imgs, labels = generator.render(bg) score_x, class_x = net(imgs) print(score_x.shape) print(class_x.shape) imgs = yolo_gluon.batch_ndimg_2_cv2img(imgs) for i in range(bs): ax = axs[i] s = score_x[i] s = nd.sigmoid(s.reshape(-1)).asnumpy() p = class_x[i, 0].asnumpy() p = np.argmax(p, axis=-1) yolo_cv.matplotlib_show_img(ax, imgs[i]) ax.plot(range(8, 384, 16), (1 - s) * 160) ax.axis('off') s = np.concatenate(([0], s, [0])) # zero-dimensional arrays cannot be concatenated # Find peaks text = '' for i in range(24): if s[i + 1] > 0.2 and s[i + 1] > s[i + 2] and s[i + 1] > s[i]: c = int(p[i]) text = text + cls_names[c] print(text) raw_input('press Enter to next batch....') elif args.mode == 'export': yolo_gluon.export(net, (1, 3, size[0], size[1]), ctx[0], export_file)
def export(self): yolo_gluon.export(self.net, (1, 3, self.size[0], self.size[1]), self.ctx[0], self.export_file, onnx=0, epoch=0)