def main(): parser = argparse.ArgumentParser() parser.add_argument('--video', type=str, default='IMAGES/test1.mp4', help='video path') parser.add_argument('--out', type=str, default='./', help='output path') args = parser.parse_args() input_size = YOLO_INPUT_SIZE yolo = Create_Yolov3(input_size=input_size, CLASSES=TRAIN_CLASSES) yolo.load_weights("./checkpoints/yolov3_face_Tiny.h5") vid_path = args.video out_path = args.out + 'output.mp4' detect_video(yolo, vid_path, out_path, show=True, CLASSES=TRAIN_CLASSES, iou_threshold=0.25)
import numpy as np import tensorflow as tf from utils import setup_tf_conf setup_tf_conf() #from yolov3.yolov3 import Create_Yolov3 from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights, detect_image, detect_video, detect_realtime from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS image_path = "./IMAGES/kite.jpg" video_path = "./IMAGES/test.mp4" yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights #detect_image(yolo, image_path, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, './IMAGES/test_pred.mp4', input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255, 0, 0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0))
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp from yolov3.configs import * #image_path = "./IMAGES/kite.jpg" video_path = "./model_data/test.mp4" yolo = Load_Yolo_model() #detect_image(yolo, image_path, "./IMAGES/kite_pred.jpg", input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, "./model_data/test_pred_Gul_GPU_test2.mp4", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255, 0, 0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0)) #detect_video_realtime_mp(video_path, "./model_data/test_pred.mp4", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0), realtime=False)
#================================================================ import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf #from yolov3.yolov3 import Create_Yolov3 from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights, detect_image, detect_video, detect_realtime from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS image_path = "./IMAGES/kite.jpg" video_path = "./IMAGES/test.mp4" yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights #detect_image(yolo, image_path, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0))
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp from yolov3.configs import * image_path = "./IMAGES/" video_path = "./IMAGES/" yolo = Load_Yolo_model() #detect_image(yolo, image_path, "./IMAGES/................", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, './IMAGES/detected.mp4', input_size=YOLO_INPUT_SIZE, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) #detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0), realtime=False)
# Website : https://pylessons.com/ # GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 # Description : object detection image and video example # #================================================================ import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf #from yolov3.yolov4 import Create_Yolo from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp,load_yolo_weights from yolov3.utils import detect_video, Load_Yolo_model from yolov3.configs import * image_path = "./IMAGES/drone1.png" #video_path = "rtsp://192.168.123.91/axis-media/media.amp" #video_path = "./IMAGES/20210325_164706_2550.mp4" video_path = "./IMAGES/cla.mp4" #yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) #yolo.load_weights("./checkpoints/yolov3_custom") # use keras weights, i add yolo = Load_Yolo_model() #detect_image(yolo, image_path, "./IMAGES/drone1.png", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES,score_threshold=0.4, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, "./IMAGES/output1.mp4", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, score_threshold=0.6,rectangle_colors=(255,0,0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) #detect_video_realtime_mp(video_path, "", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0), realtime=False) #try1(yolo)
Darknet_weights = YOLO_DARKNET_WEIGHTS # if TRAIN_YOLO_TINY: # Darknet_weights = YOLO_DARKNET_TINY_WEIGHTS time_s = time.time() video_path = ["Test_Video/people_walking_3.mp4"] # image_path = ["test_images_and_videos/deer_cow.jpg", # "test_images_and_videos/84353914_188324fbb9_b.jpg", # "test_images_and_videos/87180235_d8bb660c55_b.jpg", # "test_images_and_videos/91693053_6c39a7192c_o.jpg", # "test_images_and_videos/manymanydeers.jpg"] yolo = Create_Yolov3(input_size=input_size, CLASSES=TRAIN_CLASSES) # yolo.load_weights("./checkpoints/yolov3_custom") # use keras weights yolo.load_weights( "./checkpoints/yolov3_custom_combined_dataset") # use keras weights count = 0 # for i in image_path: # detect_image(yolo, i, "./IMAGES/new_image_"+str(count)+".jpg", input_size=input_size, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) # count+=1 for v in video_path: detect_video(yolo, v, "./IMAGES/Result_CCTV_Video_Combined_2" + ".mp4", input_size=input_size, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) time_end = time.time() time_total = time_end - time_s print('Total Time YOLO V3: > ', time_total) #detect_realtime(yolo, '', input_size=input_size, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0))