def process_batch(detections, labels, iouv): """ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: correct (Array[N, 10]), for 10 IoU levels """ correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where( (iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou] if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] # matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] matches = torch.Tensor(matches).to(iouv.device) correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv return correct
def process_batch(self, detections, labels): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """ detections = detections[detections[:, 4] > self.conf] gt_classes = labels[:, 0].int() detection_classes = detections[:, 5].int() iou = general.box_iou(labels[:, 1:], detections[:, :4]) x = torch.where(iou > self.iou_thres) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] else: matches = np.zeros((0, 3)) n = matches.shape[0] > 0 m0, m1, _ = matches.transpose().astype(np.int16) for i, gc in enumerate(gt_classes): j = m0 == i if n and sum(j) == 1: self.matrix[gc, detection_classes[m1[j]]] += 1 # correct else: self.matrix[self.nc, gc] += 1 # background FP if n: for i, dc in enumerate(detection_classes): if not any(m1 == i): self.matrix[dc, self.nc] += 1 # background FN
def test( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task='val', # train, val, test, speed or study device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a cocoapi-compatible JSON results file project='runs/test', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference model=None, dataloader=None, save_dir=Path(''), plots=True, wandb_logger=None, compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(imgsz, s=gs) # check image size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half &= device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() if isinstance(data, str): with open(data) as f: data = yaml.safe_load(f) check_dataset(data) # check is_coco = data['val'].endswith('coco/val2017.txt') # COCO dataset nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Logging log_imgs = 0 if wandb_logger and wandb_logger.wandb: log_imgs = min(wandb_logger.log_imgs, 100) # Dataloader if not training: if device.type != 'cpu': model( torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once task = task if task in ( 'train', 'val', 'test') else 'val' # path to train/val/test images dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, 'names') else model.module.names) } coco91class = coco80_to_coco91_class() s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): t_ = time_synchronized() img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width t = time_synchronized() t0 += t - t_ # Run model out, train_out = model( img, augment=augment) # inference and training outputs t1 += time_synchronized() - t # Compute loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling t = time_synchronized() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) t2 += time_synchronized() - t # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path = Path(paths[si]) seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0 ]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') # W&B logging - Media Panel plots if len( wandb_images ) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0: box_data = [{ "position": { "minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3] }, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": { "class_score": conf }, "domain": "pixel" } for *xyxy, conf, cls in pred.tolist()] boxes = { "predictions": { "box_data": box_data, "class_labels": names } } # inference-space wandb_images.append( wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name)) wandb_logger.log_training_progress( predn, path, names) if wandb_logger and wandb_logger.wandb_run else None # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int( path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ 'image_id': image_id, 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5) }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: confusion_matrix.process_batch( predn, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view( -1) # target indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view( -1) # prediction indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[ pi[j]] = ious[j] > iouv # iou_thres is 1xn if len( detected ) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) print( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) if wandb_logger and wandb_logger.wandb: val_batches = [ wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg')) ] wandb_logger.log({"Validation": val_batches}) if wandb_images: wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights ).stem if weights is not None else '' # weights anno_json = '../coco/annotations/instances_val2017.json' # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(['pycocotools']) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f'pycocotools unable to run: {e}') # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def test_model(self, config, testset): # pylint: disable=unused-argument """The testing loop for YOLOv5. Arguments: config: Configuration parameters as a dictionary. testset: The test dataset. """ assert Config().data.datasource == 'YOLO' test_loader = yolo.DataSource.get_test_loader(config['batch_size'], testset) device = next(self.model.parameters()).device # get model device # Configure self.model.eval() with open(Config().data.data_params) as f: data = yaml.load(f, Loader=yaml.SafeLoader) # model dict check_dataset(data) # check nc = Config().data.num_classes # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() seen = 0 names = { k: v for k, v in enumerate(self.model.names if hasattr( self.model, 'names') else self.module.names) } s = ('%20s' + '%12s' * 6) % \ ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, = 0., 0., 0., 0., 0., 0., 0. stats, ap, ap_class = [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(test_loader, desc=s)): img = img.to(device, non_blocking=True).float() img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width with torch.no_grad(): # Run model if Config().algorithm.type == 'mistnet': logits = self.model.forward_to(img) logits = logits.cpu().detach().numpy() logits = unary_encoding.encode(logits) logits = torch.from_numpy(logits.astype('float32')) out, train_out = self.model.forward_from(logits.to(device)) else: out, train_out = self.model(img) # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [] # for autolabelling out = non_max_suppression(out, conf_thres=0.001, iou_thres=0.6, labels=lb, multi_label=True) # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view( -1) # prediction indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view( -1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[pi[j]] = ious[ j] > iouv # iou_thres is 1xn if len( detected ) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False, save_dir='', names=names) ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) return map50
def test( weights=None, data="yolov5/data/coco128.yaml", batch_size=32, image_size=640, conf_thres=0.001, iou_thres=0.6, # for NMS task="val", device="", single_cls=False, augment=False, verbose=False, save_txt=False, # for auto-labelling save_hybrid=False, # for hybrid auto-labelling save_conf=False, # save auto-label confidences save_json=False, project="runs/test", name="exp", exist_ok=False, model=None, dataloader=None, save_dir=Path(""), # for saving images plots=True, log_imgs=0, # number of logged images ): arguments = locals() # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(device, batch_size=batch_size) # Directories save_dir = Path(increment_path(Path(project) / name, exist_ok=exist_ok)) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model image_size = check_img_size(image_size, s=model.stride.max()) # check img_size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half = device.type != "cpu" # half precision only supported on CUDA if half: model.half() # Configure model.eval() is_coco = data.endswith("coco.yaml") # is COCO dataset with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data["nc"]) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Logging log_imgs, wandb = min(log_imgs, 100), None # ceil try: import wandb # Weights & Biases except ImportError: log_imgs = 0 # Dataloader if not training: img = torch.zeros((1, 3, image_size, image_size), device=device) # init img _ = (model(img.half() if half else img) if device.type != "cpu" else None) # run once path = (data["test"] if task == "test" else data["val"] ) # path to val/test images opt = OptFactory(arguments) dataloader = create_dataloader(path, image_size, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, "names") else model.module.names) } coco91class = coco80_to_coco91_class() s = ("%20s" + "%12s" * 6) % ( "Class", "Images", "Targets", "P", "R", "[email protected]", "[email protected]:.95", ) p, r, f1, mp, mr, map50, map, t0, t1 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model( img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = ([targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] ) # for autolabelling t = time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path = Path(paths[si]) seen += 1 if len(pred) == 0: if nl: stats.append(( torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls, )) continue # Predictions predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0 ]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = ((xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()) # normalized xywh line = ((cls, *xywh, conf) if save_conf else (cls, *xywh)) # label format with open(save_dir / "labels" / (path.stem + ".txt"), "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") # W&B logging if plots and len(wandb_images) < log_imgs: box_data = [{ "position": { "minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3], }, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": { "class_score": conf }, "domain": "pixel", } for *xyxy, conf, cls in pred.tolist()] boxes = { "predictions": { "box_data": box_data, "class_labels": names } } # inference-space wandb_images.append( wandb.Image(img[si], boxes=boxes, caption=path.name)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int( path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ "image_id": image_id, "category_id": coco91class[int(p[5])] if is_coco else int(p[5]), "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: confusion_matrix.process_batch( pred, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor): ti = ((cls == tcls_tensor).nonzero(as_tuple=False).view(-1) ) # prediction indices pi = ((cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) ) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[ pi[j]] = ious[j] > iouv # iou_thres is 1xn if (len(detected) == nl ): # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f"test_batch{batch_i}_labels.jpg" # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f"test_batch{batch_i}_pred.jpg" # predictions Thread( target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True, ).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) p, r, ap50, ap = ( p[:, 0], r[:, 0], ap[:, 0], ap.mean(1), ) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = "%20s" + "%12.3g" * 6 # print format print(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1e3 for x in (t0, t1, t0 + t1)) + ( image_size, image_size, batch_size, ) # tuple if not training: print( "Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g" % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) if wandb and wandb.run: wandb.log({"Images": wandb_images}) wandb.log({ "Validation": [ wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob("test*.jpg")) ] }) # Save JSON if save_json and len(jdict): w = (Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "") # weights anno_json = "../coco/annotations/instances_val2017.json" # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print("\nEvaluating pycocotools mAP... saving %s..." % pred_json) with open(pred_json, "w") as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, "bbox") if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f"pycocotools unable to run: {e}") # Return results if not training: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "") print(f"Results saved to {save_dir}{s}") model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def test(data, weights=None, batch_size=16, imgsz=640, conf_thres=0.001, iou_thres=0.6, # for NMS save_json=False, single_cls=False, augment=False, verbose=False, model=None, dataloader=None, save_dir=Path(''), # for saving images save_txt=False, # for auto-labelling save_conf=False, plots=True): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(opt.device, batch_size=batch_size) save_txt = opt.save_txt # save *.txt labels # Remove previous if os.path.exists(save_dir): shutil.rmtree(save_dir) # delete dir os.makedirs(save_dir) # make new dir if save_txt: out = save_dir / 'autolabels' if os.path.exists(out): shutil.rmtree(out) # delete dir os.makedirs(out) # make new dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half = device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Dataloader if not training: img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0] seen = 0 names = model.names if hasattr(model, 'names') else model.module.names coco91class = coco80_to_coco91_class() s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width whwh = torch.Tensor([width, height, width, height]).to(device) # Disable gradients with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model(img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: # if model has loss hyperparameters loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS t = time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if pred is None: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh x = pred.clone() x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original for *xyxy, conf, cls in x: xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, conf, *xywh) if save_conf else (cls, *xywh) # label format with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: f.write(('%g ' * len(line) + '\n') % line) # Clip boxes to image bounds clip_coords(pred, (height, width)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = Path(paths[si]).stem box = pred[:, :4].clone() # xyxy scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape box = xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ 'image_id': int(image_id) if image_id.isnumeric() else image_id, 'category_id': coco91class[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5) }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) * whwh # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn if len(detected) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and save_dir and batch_i < 1: f = save_dir / f'test_batch{batch_i}_gt.jpg' # filename plot_images(img, targets, paths, str(f), names) # ground truth f = save_dir / f'test_batch{batch_i}_pred.jpg' plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=os.path.join(save_dir, 'precision-recall_curve.png')) p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple if not training: print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights file = save_dir / f"detections_val2017_{w}_results.json" # predicted annotations file print('\nCOCO mAP with pycocotools... saving %s...' % file) with open(file, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api cocoDt = cocoGt.loadRes(str(file)) # initialize COCO pred api cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval.params.imgIds = imgIds # image IDs to evaluate cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() map, map50 = cocoEval.stats[:2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print('ERROR: pycocotools unable to run: %s' % e) # Return results model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t