예제 #1
0
def notebook_init(verbose=True):
    # Check system software and hardware
    print("Checking setup...")

    import os
    import shutil

    from yolov5.utils.general import check_requirements, emojis, is_colab
    from yolov5.utils.torch_utils import select_device  # imports

    check_requirements(("psutil", "IPython"))
    import psutil
    from IPython import display  # to display images and clear console output

    if is_colab():
        shutil.rmtree(
            "/content/sample_data", ignore_errors=True
        )  # remove colab /sample_data directory

    if verbose:
        # System info
        # gb = 1 / 1000 ** 3  # bytes to GB
        gib = 1 / 1024 ** 3  # bytes to GiB
        ram = psutil.virtual_memory().total
        total, used, free = shutil.disk_usage("/")
        display.clear_output()
        s = f"({os.cpu_count()} CPUs, {ram * gib:.1f} GB RAM, {(total - free) * gib:.1f}/{total * gib:.1f} GB disk)"
    else:
        s = ""

    select_device(newline=False)
    print(emojis(f"Setup complete ✅ {s}"))
    return display
예제 #2
0
    def __init__(self, weights,service_name, image_size=640, nms_conf_thresh=0.4, nms_iou_thresh=0.5, device=""):
        try:
            from yolov5.utils.general import set_logging
            from yolov5.utils.torch_utils import select_device
            from yolov5.models.experimental import attempt_load
            from yolov5.utils.general import check_img_size
            from yolov5.utils.general import non_max_suppression
            from yolov5.utils.general import scale_coords
            from yolov5.utils.datasets import letterbox
        except ImportError:
            raise
        self.device = select_device(device)
        self.conf_thresh = nms_conf_thresh
        self.iou_thresh = nms_iou_thresh
        self.half = self.device.type != 'cpu'
        self.model = attempt_load(weights, map_location=self.device)
        self.image_size = check_img_size(image_size, s=self.model.stride.max())
        if self.half:
            self.model.half()  # to FP16
        self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names

        self.currently_busy = Event()

        # Base class must be called at the end due to self.service_server.spin()
        BaseDetectionServer.__init__(self, service_name=service_name)
예제 #3
0
    def __init__(self):
        self.conf = self.DETECTION_THRESHOLD
        self.device = select_device()
        self.model = DetectMultiBackend(paths.yolo_model, device=self.device)
        self.model.model.half()

        self.model.warmup(imgsz=(1, 3, *self.IMG_SIZE), half=True)
예제 #4
0
    def __init__(self, transform, opt, save_img=False):
        self.opt = opt
        self.debug = opt.debug
        self.save_txt = opt.save_txt
        self.view_img = opt.view_img
        self.transform = transform
        self.save_img = save_img
        self.fourcc = 'mp4v'
        self.resolution = (
            1920, 1080
        )  # Can also be set to False to get standard camera resolution
        self.vid_writer = None
        self.vid_path = None

        self.out = self.create_dir(opt.output)
        self.webcam = self.check_webcam(opt.source)
        self.device = select_device(opt.device)
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA
        self.model, self.imgsz, self.class_names = self.load_model()
        self.overlay_images = self.get_overlay_icons()
        self.banner_icon = self.get_banner_icon()
        self.dataset = self.set_dataloader()
        self.meta_data_writer = self.get_meta_data_writer()

        set_logging()
예제 #5
0
def process_sample(image_filepath):
    rospy.loginfo('Starting yolo sample node...')
    rospy.init_node('sample', anonymous=True)

    rospy.loginfo('Loading model...')
    device = select_device('')
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    imgsz = 224
    model = attempt_load(f'{os.path.dirname(__file__)}/yolov5/runs/train/exp4/weights/best.pt', map_location=device)
    imgsz = check_img_size(imgsz, s=model.stride.max())
    if half:
        model.half()
    
    rospy.loginfo('Reading image...')
    im = cv2.imread(image_filepath)
    if (im is None):
        rospy.loginfo('Failed to read image.')
        return

    rospy.loginfo('Running inference...')
    preds = detect(model, im)

    rospy.loginfo('Predictions:')
    for pred in preds:
        rospy.loginfo(f'    Class: {pred[0]}')
        rospy.loginfo(f'        Confidence: {pred[1]}')
        rospy.loginfo(f'        Bounds: {pred[2]}')
예제 #6
0
def custom(path_or_model='path/to/model.pt', autoshape=True):
    """YOLOv5-custom model from https://github.com/ultralytics/yolov5

    Arguments (3 options):
        path_or_model (str): 'path/to/model.pt'
        path_or_model (dict): torch.load('path/to/model.pt')
        path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

    Returns:
        pytorch model
    """
    model = torch.load(path_or_model) if isinstance(
        path_or_model, str) else path_or_model  # load checkpoint
    if isinstance(model, dict):
        model = model['ema' if model.get('ema') else 'model']  # load model

    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    if autoshape:
        hub_model = hub_model.autoshape(
        )  # for file/URI/PIL/cv2/np inputs and NMS
    device = select_device('0' if torch.cuda.is_available() else
                           'cpu')  # default to GPU if available
    return hub_model.to(device)
예제 #7
0
    def load_model(self, weights: str, device: str = 'cuda') -> None:
        device = select_device(device)
        model = attempt_load(weights, map_location=device)  # load FP32 model
        half = device.type != 'cpu'  # half precision only supported on CUDA
        if half:
            model.half()  # to FP16

        self.model = model
        self.device = device
        self.half = half
 def load_model(self,dev="cpu"):
     # Initialize
     set_logging()
     device = select_device(dev)
     # Load model
     # model = attempt_load("yolov5_model/yolov5x.pt", map_location=device)  # load FP32 model
     model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model='yolov5_model/yolov5x.pt')
     stride = int(model.stride.max())  # model stride
     imgsz = check_img_size(640, s=stride)  # check img_size
     # Run inference
     if device.type != 'cpu':
         model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))
     return model,stride,device,imgsz
예제 #9
0
 def load_models(self, weights_file_path, **kwargs):
     """
     加载模型
     :param model_file_path: weights文件路径
     :param kwargs: 其它控制参数
     """
     # 选择设备
     device = torch_utils.select_device()
     # 加载模型
     model = experimental.attempt_load([
         weights_file_path,
     ],
                                       map_location=device)
     model.float().eval()
     self.model = model
     self.device = device
예제 #10
0
    def __init__(self):
        rospy.loginfo('Starting yolo video node...')
        rospy.init_node('yolo', anonymous=True)
        self.bridge = CvBridge()
        self.pointcloud = None
        self.saved = False

        rospy.loginfo('Loading model...')
        device = select_device('')
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        imgsz = 224
        self.model = attempt_load(
            f'{os.path.dirname(__file__)}/yolov5/runs/train/exp4/weights/best.pt',
            map_location=device)
        imgsz = check_img_size(imgsz, s=self.model.stride.max())
        if half:
            self.model.half()

        # Can you recycle dict
        class_dict = dict()
        class_dict['Cardboard'] = True
        class_dict['Chips Bag'] = False
        class_dict['Disposable Cup'] = False
        class_dict['Napkin'] = False
        class_dict['Plastic Bottle'] = True
        class_dict['Plastic Container'] = True
        class_dict['Soda Can'] = True
        self.class_dict = class_dict

        # Subscribe to pointcloud to make predictions
        rospy.loginfo('Subscribing to camera pointcloud topic...')
        rospy.Subscriber('camera/depth_registered/points', PointCloud2,
                         self.process_pointcloud)

        rospy.loginfo('Awaiting images...')

        # Create publisher to publish predictions
        self.predict_pub = rospy.Publisher('yolo/detections',
                                           String,
                                           queue_size=10)

        # Create publisher to publish markers to RViz
        self.rviz_pub = rospy.Publisher('visualization_marker',
                                        Marker,
                                        queue_size=10)
예제 #11
0
def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in [-1, 0]:
        print_args(FILE.stem, opt)
        check_git_status()
        check_requirements(exclude=['thop'])

    # Resume
    if opt.resume and not check_wandb_resume(opt):  # resume an interrupted run
        ckpt = opt.resume if isinstance(
            opt.resume,
            str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(
            ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        LOGGER.info(f'Resuming training from {ckpt}')
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        assert torch.cuda.device_count(
        ) > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
        assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(
            backend="nccl" if dist.is_nccl_available() else "gloo")

    # Train
    train(opt.hyp, opt, device, callbacks)
    if WORLD_SIZE > 1 and RANK == 0:
        LOGGER.info('Destroying process group... ')
        dist.destroy_process_group()
예제 #12
0
    def __init__(self, args):
        print('Initialize DeepSORT & YOLO-V5')
        # ***************** Initialize ******************************************************
        self.args = args

        self.img_size = args.img_size  # image size in detector, default is 640
        self.frame_interval = args.frame_interval  # frequency

        self.device = select_device(args.device)
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA

        # create video capture ****************
        if args.display:
            cv2.namedWindow("test", cv2.WINDOW_NORMAL)
            cv2.resizeWindow("test", args.display_width, args.display_height)

        if args.cam != -1:
            print("Using webcam " + str(args.cam))
            self.vdo = cv2.VideoCapture(args.cam)
        else:
            self.vdo = cv2.VideoCapture()

        # ***************************** initialize DeepSORT **********************************
        cfg = get_config()
        cfg.merge_from_file(args.config_deepsort)

        use_cuda = self.device.type != 'cpu' and torch.cuda.is_available()
        self.deepsort = build_tracker(cfg, use_cuda=use_cuda)

        # ***************************** initialize YOLO-V5 **********************************
        self.detector = torch.load(
            args.weights,
            map_location=self.device)['model'].float()  # load to FP32
        self.detector.to(self.device).eval()
        if self.half:
            self.detector.half()  # to FP16

        self.names = self.detector.module.names if hasattr(
            self.detector, 'module') else self.detector.names

        print('Done..')
        if self.device == 'cpu':
            warnings.warn("Running in cpu mode which maybe very slow!",
                          UserWarning)
예제 #13
0
    def __init__(self):
        if not ModelLoader._instance:
            print("ModelLoader.__init__ method called but nothing is created")
        else:
            print("ModelLoader instance already created", self.getInstance())

        before = time.time()
        self.__device = select_device('0')
        # weights='yolov5/runs/train/exp/weights/best.pt'
        weights = 'yolov5/runs/train/exp/weights/best.pt'
        self.__model =attempt_load(weights, map_location=self.__device) 
        self.__modelc = load_classifier(name="resnet50", n=2)

        self.__retrival = ImageRetrievalClass("MobileNetV3",True,False)
        self.__retrival.buildModel(shape_img=(256,256,3))


        after = time.time()
        self.__elapsed_time = after-before
예제 #14
0
def create(name, pretrained, channels, classes, autoshape, verbose):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    try:
        set_logging(verbose=verbose)

        cfg = list((Path(__file__).parent /
                    'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
        model = Model(cfg, channels, classes)
        if pretrained:
            fname = f'{name}.pt'  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device('cpu'))  # load
            msd = model.state_dict()  # model state_dict
            csd = ckpt['model'].float().state_dict(
            )  # checkpoint state_dict as FP32
            csd = {k: v
                   for k, v in csd.items()
                   if msd[k].shape == v.shape}  # filter
            model.load_state_dict(csd, strict=False)  # load
            if len(ckpt['model'].names) == classes:
                model.names = ckpt['model'].names  # set class names attribute
            if autoshape:
                model = model.autoshape(
                )  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else
                               'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
        raise Exception(s) from e
예제 #15
0
def sweep():
    wandb.init()
    # Get hyp dict from sweep agent
    hyp_dict = vars(wandb.config).get("_items")

    # Workaround: get necessary opt args
    opt = parse_opt(known=True)
    opt.batch_size = hyp_dict.get("batch_size")
    opt.save_dir = str(
        increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
    opt.epochs = hyp_dict.get("epochs")
    opt.nosave = True
    opt.data = hyp_dict.get("data")
    opt.weights = str(opt.weights)
    opt.cfg = str(opt.cfg)
    opt.data = str(opt.data)
    opt.hyp = str(opt.hyp)
    opt.project = str(opt.project)
    device = select_device(opt.device, batch_size=opt.batch_size)

    # train
    train(hyp_dict, opt, device, callbacks=Callbacks())
예제 #16
0
def load_info(config_deepsort, device, imgsz, out, weights):

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(device)

    if not os.path.exists(out):
        os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    return t0, half, device, model, names, deepsort
예제 #17
0
    def __init__(self,
                 weights_path,
                 img_size=640,
                 device='',
                 conf_thres=0.5,
                 iou_thres=0.5,
                 classes=None):
        self._weights_path = weights_path
        self._img_size = img_size
        self._device = select_device(device)
        self._conf_thres = conf_thres
        self._iou_thres = iou_thres
        self._classes = classes

        self._half = self._device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        self._model = attempt_load(
            self._weights_path, map_location=self._device)  # load FP32 model
        self._img_size = check_img_size(
            self._img_size, s=self._model.stride.max())  # check img_size

        if self._half:
            self._model.half()  # to FP16
예제 #18
0
def _create(
    name,
    pretrained=True,
    channels=3,
    classes=80,
    autoshape=True,
    verbose=True,
    device=None,
):
    """Creates or loads a YOLOv5 model

    Arguments:
        name (str): model name 'yolov5s' or path 'path/to/best.pt'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen
        device (str, torch.device, None): device to use for model parameters

    Returns:
        YOLOv5 model
    """
    from pathlib import Path

    from yolov5.models.common import AutoShape, DetectMultiBackend
    from yolov5.models.yolo import Model
    from yolov5.utils.downloads import attempt_download
    from yolov5.utils.general import (
        LOGGER,
        check_requirements,
        intersect_dicts,
        logging,
    )
    from yolov5.utils.torch_utils import select_device

    if not verbose:
        LOGGER.setLevel(logging.WARNING)
    check_requirements(exclude=("tensorboard", "thop", "opencv-python"))
    name = Path(name)
    path = name.with_suffix(
        ".pt") if name.suffix == "" else name  # checkpoint path
    try:
        device = select_device(("0" if torch.cuda.is_available() else "cpu"
                                ) if device is None else device)

        if pretrained and channels == 3 and classes == 80:
            model = DetectMultiBackend(
                path, device=device)  # download/load FP32 model
            # model = models.experimental.attempt_load(path, map_location=device)  # download/load FP32 model
        else:
            cfg = list(
                (Path(__file__).parent /
                 "models").rglob(f"{path.stem}.yaml"))[0]  # model.yaml path
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                ckpt = torch.load(attempt_download(path),
                                  map_location=device)  # load
                csd = (ckpt["model"].float().state_dict()
                       )  # checkpoint state_dict as FP32
                csd = intersect_dicts(csd,
                                      model.state_dict(),
                                      exclude=["anchors"])  # intersect
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt["model"].names) == classes:
                    model.names = ckpt[
                        "model"].names  # set class names attribute
        if autoshape:
            model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
        return model.to(device)

    except Exception as e:
        help_url = "https://github.com/ultralytics/yolov5/issues/36"
        s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
        raise Exception(s) from e
예제 #19
0
    def detect(self, Image=None):
        out, source, weights, view_img, save_txt, imgsz = \
            self.output, self.source, self.weights, self.view_img, self.save_txt, self.img_size
        webcam = source == '0' or source.startswith(
            'rtsp') or source.startswith('http') or source.endswith('.txt')

        # Initialize
        device = torch_utils.select_device(self.device)
        # if os.path.exists(out):
        #     shutil.rmtree(out)  # delete output folder
        # os.makedirs(out)  # make new output folder
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        google_utils.attempt_download(weights)
        model = torch.load(
            weights, map_location=device)['model'].float()  # load to FP32
        # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
        # model.fuse()
        model.to(device).eval()
        if half:
            model.half()  # to FP16

        # Second-stage classifier
        classify = False
        if classify:
            modelc = torch_utils.load_classifier(name='resnet101',
                                                 n=2)  # initialize
            modelc.load_state_dict(
                torch.load('weights/resnet101.pt',
                           map_location=device)['model'])  # load weights
            modelc.to(device).eval()

        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)]
                  for _ in range(len(names))]

        # Run inference
        t0 = time.time()

        # img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img

        im0s = np.frombuffer(Image.data, dtype=np.uint8).reshape(
            Image.height, Image.width,
            -1).astype('float32')  # Added by Prasanth Suresh
        # # run once
        # _ = model(img.half() if half else img) if device.type != 'cpu' else None

        img = letterbox(im0s, new_shape=imgsz)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)

        # # for path, img, im0s, vid_cap in dataset:
        vid_cap = None
        path = 'img.jpg'
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=self.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   self.conf_thres,
                                   self.iou_thres,
                                   classes=self.classes,
                                   agnostic=self.agnostic_nms)
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # print('**** pred: ',pred)
        ''' Sorting the bounding boxes according to ascending x values '''
        if pred[0] != None:
            pred[0] = pred[0].cpu().numpy()
            pred[0] = pred[0][pred[0][:, 0].argsort()]
            pred[0] = torch.from_numpy(pred[0])
            print('**** Sorted pred: \n', pred)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            if det != None:
                self.bounding_boxes.append(det)

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            #  normalization gain whwh
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
            if det is not None and len(det):
                # Rescale boxes from img_size to im0s size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                minx = 0
                miny = 0
                maxx = 0
                maxy = 0

                for *xyxy, conf, cls in det:

                    tlx, tly, brx, bry = int(xyxy[0]), int(xyxy[1]), int(
                        xyxy[2]), int(xyxy[3])
                    if tlx < minx:
                        minx = tlx
                    if tly < miny:
                        miny = tly
                    if bry > maxy:
                        maxy = bry
                    if brx > maxx:
                        maxx = brx  # crop_img = img[y:y+h, x:x+w]

                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt',
                                  'a') as file:
                            file.write(('%g ' * 5 + '\n') %
                                       (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*self.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

        if save_txt or save_img:
            print('Results saved to %s' % os.getcwd() + os.sep + out)
            if platform == 'darwin':  # MacOS
                os.system('open ' + save_path)
################################ END OF COMMENTED OUT FOR LOOP TO RESTOR INDENT LATER ################################

        print('Done. (%.3fs)' % (time.time() - t0))
        return self.bounding_boxes


# if __name__ == '__main__':
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--weights', type=str,
#                         default='weights/yolov5s.pt', help='model.pt path')
#     # file/folder, 0 for webcam
#     parser.add_argument('--source', type=str,
#                         default='inference/images', help='source')
#     parser.add_argument('--output', type=str, default='inference/output',
#                         help='output folder')  # output folder
#     parser.add_argument('--img-size', type=int, default=640,
#                         help='inference size (pixels)')
#     parser.add_argument('--conf-thres', type=float,
#                         default=0.4, help='object confidence threshold')
#     parser.add_argument('--iou-thres', type=float,
#                         default=0.5, help='IOU threshold for NMS')
#     parser.add_argument('--fourcc', type=str, default='mp4v',
#                         help='output video codec (verify ffmpeg support)')
#     parser.add_argument('--device', default='',
#                         help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
#     parser.add_argument('--view-img', action='store_true',
#                         help='display results')
#     parser.add_argument('--save-txt', action='store_true',
#                         help='save results to *.txt')
#     parser.add_argument('--classes', nargs='+',
#                         type=int, help='filter by class')
#     parser.add_argument('--agnostic-nms', action='store_true',
#                         help='class-agnostic NMS')
#     parser.add_argument('--augment', action='store_true',
#                         help='augmented inference')
#     opt = parser.parse_args()
#     opt.img_size = check_img_size(opt.img_size)
#     print(opt)

#     with torch.no_grad():
#         detect()

# Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
#    detect()
#    create_pretrained(opt.weights, opt.weights)
예제 #20
0
def detect(opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    # run once
    _ = model(img.half() if half else img) if device.type != 'cpu' else None

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)

                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') %
                                    (frame_idx, identity, bbox_left, bbox_top,
                                     bbox_w, bbox_h, -1, -1, -1,
                                     -1))  # label format

            else:
                deepsort.increment_ages()

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                print('saving img!')
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    print('saving video!')
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
예제 #21
0
    def __init__(self):
        self.count = 0

        self.root = tk.Tk()

        self.out = "inference/output"
        self.source = "inference/images"
        self.weights = "yolov5/weights/yolov5s.pt"
        self.view_img = False
        self.save_txt = False
        self.imgsz = 1088
        self.iou_thres = 0.5
        self.classes = [0, 1, 2, 3, 5, 7]
        self.conf_thres = 0.4
        self.fourcc = "mp4v"
        self.config_deepsort = "deep_sort_pytorch/configs/deep_sort.yaml"
        self.device = ""
        self.agnostic_nms = False
        self.augment = False
        self.two_w, self.three_w, self.four_w, self.truck, self.bus, self.total = (
            None,
            None,
            None,
            None,
            None,
            None,
        )
        self.count = 0
        self.fps = None
        font = ("Arial", 25)
        self.root.resizable(0, 0)
        self.panel = tk.Frame(self.root)
        self.panel.pack(side="top", padx=10, pady=10)
        self.canvas = tk.Label(self.panel,
                               text="loading...",
                               anchor="center",
                               font=font,
                               fg="blue")
        self.canvas.pack(side="left", padx=10, pady=10)
        self.counting_result = tk.Frame(self.root)
        self.counting_result.pack(side="bottom", padx=10, pady=10)
        self.Quit_btn = tk.Button(
            self.counting_result,
            text="Quit",
            font=("Arial", 12),
            command=self.onClose,
            bg="red",
            fg="white",
            width=6,
        )
        self.Quit_btn.grid(row=2, column=5)

        # set a callback to handle when the window is closed
        self.root.wm_title("Traffic")
        self.root.wm_protocol("WM_DELETE_WINDOW", self.onClose)

        # Open camera source
        # self.vid = oneCameraCapture.cameraCapture()
        self.vs = cv2.VideoCapture("traffic3.mp4")

        self.webcam = (self.source == "0" or self.source.startswith("rtsp")
                       or self.source.startswith("http")
                       or self.source.endswith(".txt"))

        # initialize deepsort
        cfg = get_config()
        cfg.merge_from_file(self.config_deepsort)
        self.deepsort = DeepSort(
            cfg.DEEPSORT.REID_CKPT,
            max_dist=cfg.DEEPSORT.MAX_DIST,
            min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
            nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
            max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
            max_age=cfg.DEEPSORT.MAX_AGE,
            n_init=cfg.DEEPSORT.N_INIT,
            nn_budget=cfg.DEEPSORT.NN_BUDGET,
            use_cuda=True,
        )

        # Initialize
        self.device = select_device(self.device)
        if os.path.exists(self.out):
            shutil.rmtree(self.out)  # delete output folder
        os.makedirs(self.out)  # make new output folder
        self.half = self.device.type != "cpu"  # half precision only supported on CUDA

        # Load model
        self.model = torch.hub.load("ultralytics/yolov5",
                                    "yolov5s",
                                    pretrained=True)
        self.source = "traffic3.mp4"
        self.save_path = str(Path(self.out))
        self.txt_path = str(Path(self.out)) + "/results.txt"
        self.points = [[5, 100], [400, 100], [730, 300], [5, 300]]
        self.pts = np.array(self.points, np.int32)
        self.pts_arr = self.pts.reshape((-1, 1, 2))
        self.isClosed = True
        self.delay = 100
        self.update()
예제 #22
0
def test(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a cocoapi-compatible JSON results file
        project='runs/test',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        wandb_logger=None,
        compute_loss=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name,
                                  exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check image size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half &= device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    if isinstance(data, str):
        with open(data) as f:
            data = yaml.safe_load(f)
    check_dataset(data)  # check
    is_coco = data['val'].endswith('coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs = 0
    if wandb_logger and wandb_logger.wandb:
        log_imgs = min(wandb_logger.log_imgs, 100)
    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        task = task if task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       gs,
                                       single_cls,
                                       pad=0.5,
                                       rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        t_ = time_synchronized()
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        t = time_synchronized()
        t0 += t - t_

        # Run model
        out, train_out = model(
            img, augment=augment)  # inference and training outputs
        t1 += time_synchronized() - t

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1][:3]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t = time_synchronized()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        t2 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging - Media Panel plots
            if len(
                    wandb_images
            ) < log_imgs and wandb_logger.current_epoch > 0:  # Check for test operation
                if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
                    box_data = [{
                        "position": {
                            "minX": xyxy[0],
                            "minY": xyxy[1],
                            "maxX": xyxy[2],
                            "maxY": xyxy[3]
                        },
                        "class_id": int(cls),
                        "box_caption": "%s %.3f" % (names[cls], conf),
                        "scores": {
                            "class_score": conf
                        },
                        "domain": "pixel"
                    } for *xyxy, conf, cls in pred.tolist()]
                    boxes = {
                        "predictions": {
                            "box_data": box_data,
                            "class_labels": names
                        }
                    }  # inference-space
                    wandb_images.append(
                        wandb_logger.wandb.Image(img[si],
                                                 boxes=boxes,
                                                 caption=path.name))
            wandb_logger.log_training_progress(
                predn, path,
                names) if wandb_logger and wandb_logger.wandb_run else None

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[5])] if is_coco else int(p[5]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        predn, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # target indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # prediction indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t2))  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        print(
            f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb_logger and wandb_logger.wandb:
            val_batches = [
                wandb_logger.wandb.Image(str(f), caption=f.name)
                for f in sorted(save_dir.glob('test*.jpg'))
            ]
            wandb_logger.log({"Validation": val_batches})
    if wandb_images:
        wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
예제 #23
0
파일: track.py 프로젝트: AbinashCIS/Tracker
def detect(opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')
    global counter
    global features
    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA. Make faster cmputation with lower precision.

    #Write headers into csv file
    with open(str(Path(args.output)) + '/results.csv', 'a') as f:
        f.write("Time,People Count Changed,TotalCount,ActivePerson,\n")

    #Initialize the scheduler for every 2 secs
    scheduler = BackgroundScheduler()
    scheduler.start()
    scheduler.add_job(func=write_csv,
                      args=[opt.output],
                      trigger=IntervalTrigger(seconds=2))

    # Load model
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.csv'

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0(640) size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    img_h, img_w, _ = im0.shape
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)
                    features['identities'] = identities
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        # with open(txt_path, 'a') as f:
                        # f.write(f"{datetime.now()},{changes if changes != counter else 0},{counter},{len(identities)},\n")  # label format

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1), end='\r')

            # Write Counter on img
            cv2.putText(im0, "Counter : " + str(counter), (10, 20),
                        cv2.FONT_HERSHEY_PLAIN, 2, [1, 190, 200], 2)

            # Stream results
            # if view_img:
            # 	cv2.imshow(p, im0)
            # 	if cv2.waitKey(1) == ord('q'):  # q to quit
            # 		raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    print('saving img!')
                    cv2.imwrite(save_path, im0)
                else:
                    # print('saving video!')
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer. Issues with video writer. Fix later

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
    print('Done. (%.3fs)' % (time.time() - t0))
def detect(opt, save_img=False):
    ct = CentroidTracker()
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
    now = datetime.datetime.now().strftime("%Y/%m/%d/%H:%M:%S") # current time

    # Load model
    model = torch.load(weights, map_location=device)[
        'model'].float()  # load to FP32
    
    model.to(device).eval()
    
# =============================================================================
    filepath_mask = 'D:/Internship Crime Detection/YOLOv5 person detection/AjnaTask/Mytracker/yolov5/weights/mask.pt'
        
    model_mask = torch.load(filepath_mask, map_location = device)['model'].float()
    model_mask.to(device).eval()
    if half:
        model_mask.half()
        
    names_m = model_mask.module.names if hasattr(model_mask, 'module') else model_mask.names
# =============================================================================
    
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = False
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    # run once
    _ = model(img.half() if half else img) if device.type != 'cpu' else None

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    memory = {}
    people_counter = 0
    in_people = 0
    out_people = 0
    people_mask = 0
    people_none = 0
    time_sum = 0
    # now_time = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]
# =============================================================================
        pred_mask = model_mask(img)[0]
# =============================================================================
        # Apply NMS
        pred = non_max_suppression(
            pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        
# =============================================================================
        pred_mask = non_max_suppression(pred_mask, 0.4, 0.5, classes = [0, 1, 2], agnostic = None)
        
        if pred_mask is None:
            continue
        classification = torch.cat(pred_mask)[:, -1]
        if len(classification) == 0:
            print("----",None)
            continue
        index = int(classification[0])
        
        mask_class = names_m[index]
        print("MASK CLASS>>>>>>> \n", mask_class)
# =============================================================================

        # Create the haar cascade
        # cascPath = "D:/Internship Crime Detection/YOLOv5 person detection/AjnaTask/Mytracker/haarcascade_frontalface_alt2.xml"
        # faceCascade = cv2.CascadeClassifier(cascPath)
        
        
        t2 = time_synchronized()
        
        
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)
            img_center_y = int(im0.shape[0]//2)
            # line = [(int(im0.shape[1]*0.258),int(img_center_y*1.3)),(int(im0.shape[1]*0.55),int(img_center_y*1.3))]
            # print("LINE>>>>>>>>>", line,"------------")
            # line = [(990, 672), (1072, 24)]
            line = [(1272, 892), (1800, 203)]
            #  [(330, 468), (704, 468)]
            print("LINE>>>>>>>>>", line,"------------")
            cv2.line(im0,line[0],line[1],(0,0,255),5)
            
# =============================================================================
#             gray = cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)
#             # Detect faces in the image
#             faces = faceCascade.detectMultiScale(
#             gray,
#             scaleFactor=1.1,
#             minNeighbors=5,
#             minSize=(30, 30)
#             )
#             # Draw a rectangle around the faces
#             for (x, y, w, h) in faces:
#                 cv2.rectangle(im0, (x, y), (x+w, y+h), (0, 255, 0), 2)
#                 text_x = x
#                 text_y = y+h
#                 cv2.putText(im0, mask_class, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
#                                                     1, (0, 0, 255), thickness=1, lineType=2)
# =============================================================================
        
            
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []
                bbox_xyxy = []
                rects = [] # Is it correct?

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
                    # label = f'{names[int(cls)]}'
                    xyxy_list = torch.tensor(xyxy).view(1,4).view(-1).tolist()
                    plot_one_box(xyxy, im0, label='person', color=colors[int(cls)], line_thickness=3)
                    rects.append(xyxy_list)
                    
                    obj = [x_c, y_c, bbox_w, bbox_h,int(cls)]
                    #cv2.circle(im0,(int(x_c),int(y_c)),color=(0,255,255),radius=12,thickness = 10)
                    bbox_xywh.append(obj)
                    # bbox_xyxy.append(rec)
                    confs.append([conf.item()])
                    


                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = ct.update(rects) # xyxy
                # outputs = deepsort.update(xywhs, confss, im0) # deepsort
                index_id = []
                previous = memory.copy()
                memory = {}
                boxes = []
                names_ls = []
                


                # draw boxes for visualization
                if len(outputs) > 0:
                    
                    # print('output len',len(outputs))
                    for id_,centroid in outputs.items():
                        # boxes.append([output[0],output[1],output[2],output[3]])
                        # index_id.append('{}-{}'.format(names_ls[-1],output[-2]))
                        index_id.append(id_)
                        boxes.append(centroid)
                        memory[index_id[-1]] = boxes[-1]

                    
                    i = int(0)
                    print(">>>>>>>",boxes)
                    for box in boxes:
                        # extract the bounding box coordinates
                        # (x, y) = (int(box[0]), int(box[1]))
                        # (w, h) = (int(box[2]), int(box[3]))
                        x = int(box[0])
                        y = int(box[1])
                        # GGG
                        if index_id[i] in previous:
                            previous_box = previous[index_id[i]]
                            (x2, y2) = (int(previous_box[0]), int(previous_box[1]))
                            # (w2, h2) = (int(previous_box[2]), int(previous_box[3]))
                            p0 = (x,y)
                            p1 = (x2,y2)
                            
                            cv2.line(im0, p0, p1, (0,255,0), 3) # current frame obj center point - before frame obj center point
                        
                            if intersect(p0, p1, line[0], line[1]):
                                people_counter += 1
                                print('==============================')
                                print(p0,"---------------------------",p0[1])
                                print('==============================')
                                print(line[1][1],'------------------',line[0][0],'-----------------', line[1][0],'-------------',line[0][1])
                                # if p0[1] <= line[1][1]:
                                #     in_people +=1
                    
                                
                                # else:
                                #     # if mask_class == 'mask':
                                #     #     print("COUNTING MASK..", mask_class)
                                #     #     people_mask += 1
                                #     # if mask_class == 'none':
                                #     #     people_none += 1
                                #     out_people +=1 
                                if p0[1] >= line[1][1]:
                                    in_people += 1
                                    if mask_class == 'mask':
                                        people_mask += 1
                                    else:
                                        people_none += 1
                                else:
                                    out_people += 1
                            

                        i += 1

                    
                        
                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
                                                           bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))  # label format
                
            else:
                deepsort.increment_ages()
            cv2.putText(im0, 'Person [down][up] : [{}][{}]'.format(out_people,in_people),(130,50),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,255),3)
            cv2.putText(im0, 'Person [mask][no_mask] : [{}][{}]'.format(people_mask, people_none), (130,100),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,255),3)
            # Print time (inference + NMS)
            
            
            print('%sDone. (%.3fs)' % (s, t2 - t1))
            time_sum += t2-t1
            
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    # im0= cv2.resize(im0,(0,0),fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
                    cv2.imwrite(save_path, im0)
                else:
                    
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
    
    print('Done. (%.3fs)' % (time.time() - t0))
예제 #25
0
        logger.info('Resuming training from %s' % ckpt)

    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        log_dir = increment_dir(Path(opt.logdir) / 'exp',
                                opt.name)  # runs/exp1

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
        hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps
        if 'box' not in hyp:
            warn(
                'Compatibility: %s missing "box" which was renamed from "giou" in %s'
예제 #26
0
def detect(
    weights="yolov5s.pt",
    source="yolov5/data/images",
    img_size=640,
    conf_thres=0.75,
    iou_thres=0.45,
    device="",
    view_img=False,
    save_txt=False,
    save_conf=False,
    classes=None,
    agnostic_nms=False,
    augment=False,
    update=False,
    project="runs/detect",
    name="exp",
    exist_ok=False,
    save_img=False,
):
    """
    Args:
        weights: str
            model.pt path(s)
        source: str
            file/folder, 0 for webcam
        img_size: int
            inference size (pixels)
        conf_thres: float
            object confidence threshold
        iou_thres: float
            IOU threshold for NMS
        device: str
            cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img: bool
            display results
        save_txt: bool
            save results to *.txt
        save_conf: bool
            save confidences in save_txt labels
        classes: int
            filter by class: [0], or [0, 2, 3]
        agnostic-nms: bool
            class-agnostic NMS
        augment: bool
            augmented inference
        update: bool
            update all models
        project: str
            save results to project/name
        name: str
            save results to project/name
        exist_ok: bool
            existing project/name ok, do not increment
    """
    source, weights, view_img, save_txt, imgsz = (
        source,
        weights,
        view_img,
        save_txt,
        img_size,
    )
    webcam = (
        source.isnumeric()
        or source.endswith(".txt")
        or source.lower().startswith(("rtsp://", "rtmp://", "http://"))
    )

    # Directories
    save_dir = Path(
        increment_path(Path(project) / name, exist_ok=exist_ok)
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half = device.type != "cpu"  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name="resnet101", n=2)  # initialize
        modelc.load_state_dict(
            torch.load("weights/resnet101.pt", map_location=device)["model"]
        ).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, "module") else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != "cpu" else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(
            pred,
            conf_thres,
            iou_thres,
            classes=classes,
            agnostic=agnostic_nms,
        )
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # img.txt
            s += "%gx%g " % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}s, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (
                            (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
                            .view(-1)
                            .tolist()
                        )  # normalized xywh
                        line = (
                            (cls, *xywh, conf) if save_conf else (cls, *xywh)
                        )  # label format
                        with open(txt_path + ".txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or view_img:  # Add bbox to image
                        label = f"{names[int(cls)]} {conf:.2f}"
                        plot_one_box(
                            xyxy,
                            im0,
                            label=label,
                            color=colors[int(cls)],
                            line_thickness=3,
                        )

            # Print time (inference + NMS)
            print(f"{s}Done. ({t2 - t1:.3f}s)")

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = "mp4v"  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
                        )
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = (
            f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
            if save_txt
            else ""
        )
        print(f"Results saved to {save_dir}{s}")

    print(f"Done. ({time.time() - t0:.3f}s)")
예제 #27
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights',
                        type=str,
                        default='yolov5s.pt',
                        help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    #parser.add_argument('--data', type=str, default='yolov5/data/coco128.yaml', help='data.yaml path')
    #parser.add_argument('--hyp', type=str, default='yolov5/data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--data', type=str, default='', help='data.yaml path')
    parser.add_argument('--hyp',
                        type=str,
                        default='',
                        help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size',
                        type=int,
                        default=16,
                        help='total batch size for all GPUs')
    parser.add_argument('--img-size',
                        nargs='+',
                        type=int,
                        default=[640, 640],
                        help='[train, test] image sizes')
    parser.add_argument('--rect',
                        action='store_true',
                        help='rectangular training')
    parser.add_argument('--resume',
                        nargs='?',
                        const=True,
                        default=False,
                        help='resume most recent training')
    parser.add_argument('--nosave',
                        action='store_true',
                        help='only save final checkpoint')
    parser.add_argument('--notest',
                        action='store_true',
                        help='only test final epoch')
    parser.add_argument('--noautoanchor',
                        action='store_true',
                        help='disable autoanchor check')
    parser.add_argument('--evolve',
                        action='store_true',
                        help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images',
                        action='store_true',
                        help='cache images for faster training')
    parser.add_argument('--image-weights',
                        action='store_true',
                        help='use weighted image selection for training')
    parser.add_argument('--device',
                        default='',
                        help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale',
                        action='store_true',
                        help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls',
                        action='store_true',
                        help='train multi-class data as single-class')
    parser.add_argument('--adam',
                        action='store_true',
                        help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn',
                        action='store_true',
                        help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank',
                        type=int,
                        default=-1,
                        help='DDP parameter, do not modify')
    parser.add_argument('--workers',
                        type=int,
                        default=8,
                        help='maximum number of dataloader workers')
    parser.add_argument('--project',
                        default='runs/train',
                        help='save to project/name')
    parser.add_argument('--entity', default=None, help='W&B entity')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok',
                        action='store_true',
                        help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--linear-lr', action='store_true', help='linear LR')
    parser.add_argument('--label-smoothing',
                        type=float,
                        default=0.0,
                        help='Label smoothing epsilon')
    parser.add_argument('--upload_dataset',
                        action='store_true',
                        help='Upload dataset as W&B artifact table')
    parser.add_argument('--bbox_interval',
                        type=int,
                        default=-1,
                        help='Set bounding-box image logging interval for W&B')
    parser.add_argument('--save_period',
                        type=int,
                        default=-1,
                        help='Log model after every "save_period" epoch')
    parser.add_argument('--artifact_alias',
                        type=str,
                        default="latest",
                        help='version of dataset artifact to be used')
    opt = parser.parse_args()

    # Set DDP variables
    opt.world_size = int(
        os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:
        check_git_status()
        #check_requirements()

    # Resume
    wandb_run = check_wandb_resume(opt)
    if opt.resume and not wandb_run:  # resume an interrupted run
        ckpt = opt.resume if isinstance(
            opt.resume,
            str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(
            ckpt), 'ERROR: --resume checkpoint does not exist'
        apriori = opt.global_rank, opt.local_rank
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = \
            '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        opt.hyp = opt.hyp or str(
            Path(__file__).parent / 'data' /
            ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml'))
        opt.data = opt.data or str(Path(__file__).parent / 'data/coco128.yaml')

        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok | opt.evolve))

    # DDP mode
    opt.total_batch_size = opt.batch_size
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
        hyp = yaml.safe_load(f)  # load hyps

    # Train
    logger.info(opt)
    if not opt.evolve:
        tb_writer = None  # init loggers
        if opt.global_rank in [-1, 0]:
            prefix = colorstr('tensorboard: ')
            logger.info(
                f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/"
            )
            tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard
        train(hyp, opt, device, tb_writer)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0':
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf':
            (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma':
            (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0,
                      0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective':
            (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0)
        }  # image mixup (probability)

        assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(
            opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' %
                      opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if Path('evolve.txt').exists(
            ):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(
            f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
            f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}'
        )
예제 #28
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url
                                                               and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (
        pt or jit or onnx or engine
    ) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(
                            '.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
예제 #29
0
    return nn.Sequential(*layers), sorted(save)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg',
                        type=str,
                        default='yolov5s.yaml',
                        help='model.yaml')
    parser.add_argument('--device',
                        default='',
                        help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    opt = parser.parse_args()
    opt.cfg = check_file(opt.cfg)  # check file
    set_logging()
    device = select_device(opt.device)

    # Create model
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile
    # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
    # y = model(img, profile=True)

    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph
    # tb_writer.add_image('test', img[0], dataformats='CWH')  # add model to tensorboard
예제 #30
0
def mainFunc(args):
    # Set the main function flag
    print("Main Function Start...")

    # Check the GPU device
    print("Number of available GPUs: {}".format(torch.cuda.device_count()))

    # Check whether using the distributed runing for the network
    is_distributed = initDistributed(args)
    master = True
    if is_distributed and os.environ["RANK"]:
        master = int(
            os.environ["RANK"]) == 0  # check whether this node is master node

    # Configuration for device setting
    set_logging()
    if is_distributed:
        device = torch.device('cuda:{}'.format(args.local_rank))
    else:
        device = select_device(args.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load the configuration
    config = loadConfig(args.config)

    # CuDNN related setting
    if torch.cuda.is_available():
        cudnn.benchmark = config.DEVICE.CUDNN.BENCHMARK
        cudnn.deterministic = config.DEVICE.CUDNN.DETERMINISTIC
        cudnn.enabled = config.DEVICE.CUDNN.ENABLED

    # Configurations for dirctories
    save_img, save_dir, source, yolov5_weights, view_img, save_txt, imgsz = \
        False, Path(args.save_dir), args.source, args.weights, args.view_img, args.save_txt, args.img_size
    webcam = source.isnumeric() or source.startswith(
        ('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')

    if save_dir == Path('runs/detect'):  # if default
        os.makedirs('runs/detect', exist_ok=True)  # make base
        save_dir = Path(increment_dir(save_dir / 'exp',
                                      args.name))  # increment run
    os.makedirs(save_dir / 'labels' if save_txt else save_dir,
                exist_ok=True)  # make new dir

    # Load yolov5 model for human detection
    model_yolov5 = attempt_load(config.MODEL.PRETRAINED.YOLOV5,
                                map_location=device)
    imgsz = check_img_size(imgsz,
                           s=model_yolov5.stride.max())  # check img_size
    if half:
        model_yolov5.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        model_classifier = load_classifier(name='resnet101', n=2)  # initialize
        model_classifier.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        model_classifier.to(device).eval()

    # Load resnet model for human keypoints estimation
    model_resnet = eval('pose_models.' + config.MODEL.NAME.RESNET +
                        '.get_pose_net')(config, is_train=False)
    if config.EVAL.RESNET.MODEL_FILE:
        print('=> loading model from {}'.format(config.EVAL.RESNET.MODEL_FILE))
        model_resnet.load_state_dict(torch.load(config.EVAL.RESNET.MODEL_FILE),
                                     strict=False)
    else:
        print('expected model defined in config at EVAL.RESNET.MODEL_FILE')
    model_resnet.to(device)
    model_resnet.eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
    pose_transform = transforms.Compose(
        [  # input transformation for 2d human pose estimation
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

    # Get names and colors
    names = model_yolov5.module.names if hasattr(
        model_yolov5, 'module') else model_yolov5.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Construt filters for filtering 2D/3D human keypoints
    # filters_2d = constructFilters((1,16,2), freq=25, mincutoff=1, beta=0.01)  # for test
    # filters_3d = constructFilters((1,16,3), freq=25, mincutoff=1, beta=0.01)

    # Run the yolov5 and resnet for 2d human pose estimation
    # with torch.no_grad():
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model_yolov5(img.half() if half else img
                     ) if device.type != 'cpu' else None  # run once

    # Process every video frame
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred_boxes = model_yolov5(img, augment=args.augment)[0]

        # Apply NMS
        pred_boxes = non_max_suppression(pred_boxes,
                                         args.conf_thres,
                                         args.iou_thres,
                                         classes=args.classes,
                                         agnostic=args.agnostic_nms)
        t2 = time_synchronized()

        # Can not find people and move to next frame
        if pred_boxes[0] is None:
            # show the frame with no human detected
            cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL)
            cv2.imshow("2D Human Pose Estimation", im0s[0].copy())
            # wait manual operations
            # with kb.Listener(on_press=on_press) as listener:
            #     listener.join()
            #     return
            # if kb.is_pressed('t'):
            #     return
            print("No Human Detected and Move on.")
            print("-" * 30)
            continue

        # Print time (inference + NMS)
        detect_time = t2 - t1
        detect_fps = 1.0 / detect_time
        print("Human Detection Time: {}, Human Detection FPS: {}".format(
            detect_time, detect_fps))

        # Apply Classifier
        if classify:  # false
            pred_boxes = apply_classifier(pred_boxes, model_classifier, img,
                                          im0s)

        # Estimate 2d human pose(multiple person)
        centers = []
        scales = []
        for id, boxes in enumerate(pred_boxes):
            if boxes is not None and len(boxes):
                boxes[:, :4] = scale_coords(img.shape[2:], boxes[:, :4],
                                            im0s[id].copy().shape).round()
            # convert tensor to list format
            boxes = np.delete(boxes.cpu().numpy(), [-2, -1], axis=1).tolist()
            for l in range(len(boxes)):
                boxes[l] = [tuple(boxes[l][0:2]), tuple(boxes[l][2:4])]
            # convert box to center and scale
            for box in boxes:
                center, scale = box_to_center_scale(box, imgsz, imgsz)
                centers.append(center)
                scales.append(scale)
        t3 = time_synchronized()
        pred_pose_2d = get_pose_estimation_prediction(config,
                                                      model_resnet,
                                                      im0s[0],
                                                      centers,
                                                      scales,
                                                      transform=pose_transform,
                                                      device=device)
        t4 = time_synchronized()

        # Print time (2d human pose estimation)
        estimate_time = t4 - t3
        estimate_fps = 1.0 / estimate_time
        print("Pose Estimation Time: {}, Pose Estimation FPS: {}".format(
            estimate_time, estimate_fps))

        # Filter the predicted 2d human pose(multiple person)
        t5 = time_synchronized()
        # if False:  # for test
        if config.EVAL.RESNET.USE_FILTERS_2D:
            # construct filters for every keypoints of every person in 2D
            filters_2d = constructFilters(pred_pose_2d.shape,
                                          freq=1,
                                          mincutoff=1,
                                          beta=0.01)
            print("Shape of filters_2d: ({}, {}, {})".format(
                len(filters_2d), len(filters_2d[0]),
                len(filters_2d[0][0])))  # for test
            for per in range(pred_pose_2d.shape[0]):
                for kp in range(pred_pose_2d.shape[1]):
                    for coord in range(pred_pose_2d.shape[2]):
                        pred_pose_2d[per][kp][coord] = filters_2d[per][kp][
                            coord](pred_pose_2d[per][kp][coord])
        t6 = time_synchronized()

        # Print time (filter 2d human pose)
        filter_time_2d = t6 - t5
        filter_fps_2d = 1.0 / filter_time_2d
        print("Filter 2D Pose Time: {}, Filter 2D Pose FPS: {}".format(
            filter_time_2d, filter_fps_2d))

        # Process detections and estimations in 2D
        for i, box in enumerate(pred_boxes):
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh

            if box is not None and len(box):
                # Rescale boxes from img_size to im0 size
                box[:, :4] = scale_coords(img.shape[2:], box[:, :4],
                                          im0.shape).round()

                # Print results
                for c in box[:, -1].unique():
                    n = (box[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(box):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if args.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line) + '\n') % line)

                    # Add bbox to image
                    if save_img or view_img:
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

                # Draw joint keypoints, number orders and human skeletons for every detected people in 2D
                for person in pred_pose_2d:
                    # draw the human keypoints
                    for idx, coord in enumerate(person):
                        x_coord, y_coord = int(coord[0]), int(coord[1])
                        cv2.circle(im0, (x_coord, y_coord), 1, (0, 0, 255), 5)
                        cv2.putText(im0, str(idx), (x_coord, y_coord),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.6,
                                    (255, 255, 255), 2, cv2.LINE_AA)

                    # draw the human skeletons in PACIFIC mode
                    for skeleton in PACIFIC_SKELETON_INDEXES:
                        cv2.line(im0, (int(person[skeleton[0]][0]),
                                       int(person[skeleton[0]][1])),
                                 (int(person[skeleton[1]][0]),
                                  int(person[skeleton[1]][1])), skeleton[2], 2)

            # Print time (inference + NMS + estimation)
            print('%sDone. (%.3fs)' % (s, t4 - t1))

            # Stream results
            if view_img:
                detect_text = "Detect FPS:{0:0>5.2f}/{1:0>6.2f}ms".format(
                    detect_fps, detect_time * 1000)
                estimate_text = "Estimate FPS:{0:0>5.2f}/{1:0>6.2f}ms".format(
                    estimate_fps, estimate_time * 1000)
                cv2.putText(im0, detect_text, (10, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2,
                            cv2.LINE_AA)
                cv2.putText(im0, estimate_text, (10, 60),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2,
                            cv2.LINE_AA)
                cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL)
                cv2.imshow("2D Human Pose Estimation", im0)
                if cv2.waitKey(1) & 0xFF == ord('q'):  # q to quit
                    return
                    # goto .mainFunc

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

        # Print time (inference + NMS + estimation + 2d filtering)
        all_process_time = t6 - t1
        all_process_fps = 1.0 / all_process_time
        print("All Process Time: {}, All Process FPS: {}".format(
            all_process_time, all_process_fps))
        print("-" * 30)

    # Goto label
    # label .mainFunc

    # Print saving results
    if save_txt or save_img:
        print('Results saved to %s' % save_dir)

    # Release video reader and writer, then destory all opencv windows
    dataset.vid_cap.release()
    vid_writer.release()
    cv2.destroyAllWindows()
    print('Present 2D Human Pose Inference Done. Total Time:(%.3f seconds)' %
          (time.time() - t0))