def binomial(self, name, logits, n_experiments, n_samples=None, group_ndims=0, dtype=tf.int32, check_numerics=False, **kwargs): """ Add a stochastic node in this :class:`BayesianNet` that follows the Binomial distribution. :param name: The name of the stochastic node. Must be unique in a :class:`BayesianNet`. See :class:`~zhusuan.distributions.univariate.Binomial` for more information about the other arguments. :return: A :class:`StochasticTensor` instance. """ dist = distributions.Binomial(logits, n_experiments, group_ndims=group_ndims, dtype=dtype, check_numerics=check_numerics, **kwargs) return self.stochastic(name, dist, n_samples=n_samples, **kwargs)
def __init__(self, name, logits, n_experiments, n_samples=None, group_event_ndims=0, dtype=None, check_numerics=False): binomial = distributions.Binomial(logits, n_experiments, group_event_ndims=group_event_ndims, dtype=dtype, check_numerics=check_numerics) super(Binomial, self).__init__(name, binomial, n_samples)