def transaction_sim(self, **params): """This is a utility method that asserts expected results for conversion of orders to transactions given a trade history """ trade_count = params["trade_count"] trade_interval = params["trade_interval"] order_count = params["order_count"] order_amount = params["order_amount"] order_interval = params["order_interval"] expected_txn_count = params["expected_txn_count"] expected_txn_volume = params["expected_txn_volume"] # optional parameters # --------------------- # if present, alternate between long and short sales alternate = params.get("alternate") # if present, expect transaction amounts to match orders exactly. complete_fill = params.get("complete_fill") asset1 = self.asset_finder.retrieve_asset(1) with TempDirectory() as tempdir: if trade_interval < timedelta(days=1): sim_params = factory.create_simulation_parameters( start=self.start, end=self.end, data_frequency="minute") minutes = self.trading_calendar.minutes_window( sim_params.first_open, int((trade_interval.total_seconds() / 60) * trade_count) + 100, ) price_data = np.array([10.1] * len(minutes)) assets = { asset1.sid: pd.DataFrame({ "open": price_data, "high": price_data, "low": price_data, "close": price_data, "volume": np.array([100] * len(minutes)), "dt": minutes, }).set_index("dt") } write_bcolz_minute_data( self.trading_calendar, self.trading_calendar.sessions_in_range( self.trading_calendar.minute_to_session_label( minutes[0]), self.trading_calendar.minute_to_session_label( minutes[-1]), ), tempdir.path, assets.items(), ) equity_minute_reader = BcolzMinuteBarReader(tempdir.path) data_portal = DataPortal( self.asset_finder, self.trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, ) else: sim_params = factory.create_simulation_parameters( data_frequency="daily") days = sim_params.sessions assets = { 1: pd.DataFrame( { "open": [10.1] * len(days), "high": [10.1] * len(days), "low": [10.1] * len(days), "close": [10.1] * len(days), "volume": [100] * len(days), "day": [day.value for day in days], }, index=days, ) } path = os.path.join(tempdir.path, "testdata.bcolz") BcolzDailyBarWriter(path, self.trading_calendar, days[0], days[-1]).write(assets.items()) equity_daily_reader = BcolzDailyBarReader(path) data_portal = DataPortal( self.asset_finder, self.trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, ) if "default_slippage" not in params or not params[ "default_slippage"]: slippage_func = FixedBasisPointsSlippage() else: slippage_func = None blotter = SimulationBlotter(slippage_func) start_date = sim_params.first_open if alternate: alternator = -1 else: alternator = 1 tracker = MetricsTracker( trading_calendar=self.trading_calendar, first_session=sim_params.start_session, last_session=sim_params.end_session, capital_base=sim_params.capital_base, emission_rate=sim_params.emission_rate, data_frequency=sim_params.data_frequency, asset_finder=self.asset_finder, metrics=load_metrics_set("none"), ) # replicate what tradesim does by going through every minute or day # of the simulation and processing open orders each time if sim_params.data_frequency == "minute": ticks = minutes else: ticks = days transactions = [] order_list = [] order_date = start_date for tick in ticks: blotter.current_dt = tick if tick >= order_date and len(order_list) < order_count: # place an order direction = alternator**len(order_list) order_id = blotter.order( asset1, order_amount * direction, MarketOrder(), ) order_list.append(blotter.orders[order_id]) order_date = order_date + order_interval # move after market orders to just after market next # market open. if order_date.hour >= 21: if order_date.minute >= 00: order_date = order_date + timedelta(days=1) order_date = order_date.replace(hour=14, minute=30) else: bar_data = BarData( data_portal=data_portal, simulation_dt_func=lambda: tick, data_frequency=sim_params.data_frequency, trading_calendar=self.trading_calendar, restrictions=NoRestrictions(), ) txns, _, closed_orders = blotter.get_transactions(bar_data) for txn in txns: tracker.process_transaction(txn) transactions.append(txn) blotter.prune_orders(closed_orders) for i in range(order_count): order = order_list[i] assert order.asset == asset1 assert order.amount == order_amount * alternator**i if complete_fill: assert len(transactions) == len(order_list) total_volume = 0 for i in range(len(transactions)): txn = transactions[i] total_volume += txn.amount if complete_fill: order = order_list[i] assert order.amount == txn.amount assert total_volume == expected_txn_volume assert len(transactions) == expected_txn_count if total_volume == 0: with pytest.raises(KeyError): tracker.positions[asset1] else: cumulative_pos = tracker.positions[asset1] assert total_volume == cumulative_pos.amount # the open orders should not contain the asset. oo = blotter.open_orders assert asset1 not in oo, "Entry is removed when no open orders"
def transaction_sim(self, **params): """This is a utility method that asserts expected results for conversion of orders to transactions given a trade history """ trade_count = params['trade_count'] trade_interval = params['trade_interval'] order_count = params['order_count'] order_amount = params['order_amount'] order_interval = params['order_interval'] expected_txn_count = params['expected_txn_count'] expected_txn_volume = params['expected_txn_volume'] # optional parameters # --------------------- # if present, alternate between long and short sales alternate = params.get('alternate') # if present, expect transaction amounts to match orders exactly. complete_fill = params.get('complete_fill') asset1 = self.asset_finder.retrieve_asset(1) with TempDirectory() as tempdir: if trade_interval < timedelta(days=1): sim_params = factory.create_simulation_parameters( start=self.start, end=self.end, data_frequency="minute" ) minutes = self.trading_calendar.minutes_window( sim_params.first_open, int((trade_interval.total_seconds() / 60) * trade_count) + 100) price_data = np.array([10.1] * len(minutes)) assets = { asset1.sid: pd.DataFrame({ "open": price_data, "high": price_data, "low": price_data, "close": price_data, "volume": np.array([100] * len(minutes)), "dt": minutes }).set_index("dt") } write_bcolz_minute_data( self.trading_calendar, self.trading_calendar.sessions_in_range( self.trading_calendar.minute_to_session_label( minutes[0] ), self.trading_calendar.minute_to_session_label( minutes[-1] ) ), tempdir.path, iteritems(assets), ) equity_minute_reader = BcolzMinuteBarReader(tempdir.path) data_portal = DataPortal( self.asset_finder, self.trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, ) else: sim_params = factory.create_simulation_parameters( data_frequency="daily" ) days = sim_params.sessions assets = { 1: pd.DataFrame({ "open": [10.1] * len(days), "high": [10.1] * len(days), "low": [10.1] * len(days), "close": [10.1] * len(days), "volume": [100] * len(days), "day": [day.value for day in days] }, index=days) } path = os.path.join(tempdir.path, "testdata.bcolz") BcolzDailyBarWriter(path, self.trading_calendar, days[0], days[-1]).write( assets.items() ) equity_daily_reader = BcolzDailyBarReader(path) data_portal = DataPortal( self.asset_finder, self.trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, ) if "default_slippage" not in params or \ not params["default_slippage"]: slippage_func = FixedBasisPointsSlippage() else: slippage_func = None blotter = SimulationBlotter(slippage_func) start_date = sim_params.first_open if alternate: alternator = -1 else: alternator = 1 tracker = MetricsTracker( trading_calendar=self.trading_calendar, first_session=sim_params.start_session, last_session=sim_params.end_session, capital_base=sim_params.capital_base, emission_rate=sim_params.emission_rate, data_frequency=sim_params.data_frequency, asset_finder=self.asset_finder, metrics=load_metrics_set('none'), ) # replicate what tradesim does by going through every minute or day # of the simulation and processing open orders each time if sim_params.data_frequency == "minute": ticks = minutes else: ticks = days transactions = [] order_list = [] order_date = start_date for tick in ticks: blotter.current_dt = tick if tick >= order_date and len(order_list) < order_count: # place an order direction = alternator ** len(order_list) order_id = blotter.order( asset1, order_amount * direction, MarketOrder(), ) order_list.append(blotter.orders[order_id]) order_date = order_date + order_interval # move after market orders to just after market next # market open. if order_date.hour >= 21: if order_date.minute >= 00: order_date = order_date + timedelta(days=1) order_date = order_date.replace(hour=14, minute=30) else: bar_data = BarData( data_portal=data_portal, simulation_dt_func=lambda: tick, data_frequency=sim_params.data_frequency, trading_calendar=self.trading_calendar, restrictions=NoRestrictions(), ) txns, _, closed_orders = blotter.get_transactions(bar_data) for txn in txns: tracker.process_transaction(txn) transactions.append(txn) blotter.prune_orders(closed_orders) for i in range(order_count): order = order_list[i] self.assertEqual(order.asset, asset1) self.assertEqual(order.amount, order_amount * alternator ** i) if complete_fill: self.assertEqual(len(transactions), len(order_list)) total_volume = 0 for i in range(len(transactions)): txn = transactions[i] total_volume += txn.amount if complete_fill: order = order_list[i] self.assertEqual(order.amount, txn.amount) self.assertEqual(total_volume, expected_txn_volume) self.assertEqual(len(transactions), expected_txn_count) if total_volume == 0: self.assertRaises(KeyError, lambda: tracker.positions[asset1]) else: cumulative_pos = tracker.positions[asset1] self.assertEqual(total_volume, cumulative_pos.amount) # the open orders should not contain the asset. oo = blotter.open_orders self.assertNotIn( asset1, oo, "Entry is removed when no open orders" )