def make_daily_bar_data(cls, assets, calendar, sessions): # Generate prices corresponding to uniform random returns with a slight # positive tendency. start = cls.INTERNATIONAL_PRICING_STARTING_PRICES[calendar.name] closes = random_tick_prices(start, len(sessions)) opens = closes - 0.05 highs = closes + 0.10 lows = closes - 0.10 volumes = np.arange(10000, 10000 + len(closes)) base_frame = pd.DataFrame( { "close": closes, "open": opens, "high": highs, "low": lows, "volume": volumes, }, index=sessions, ) for asset in assets: sid = asset.sid yield sid, base_frame + sid
def make_daily_bar_data(cls, assets, calendar, sessions): # Generate prices corresponding to uniform random returns with a slight # positive tendency. start = cls.INTERNATIONAL_PRICING_STARTING_PRICES[calendar.name] closes = random_tick_prices(start, len(sessions)) opens = closes - 0.05 highs = closes + 0.10 lows = closes - 0.10 volumes = np.arange(10000, 10000 + len(closes)) base_frame = pd.DataFrame({ 'close': closes, 'open': opens, 'high': highs, 'low': lows, 'volume': volumes, }, index=sessions) for asset in assets: sid = asset.sid yield sid, base_frame + sid