def get_validation_data(self): if self.validation_dataset is not None: fs = self.validation_dataset.transform( MergeFeatureLabelFeatureTransformer()) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs return None
def get_training_data(self): sample_rdd = self.rdd.map( lambda t: Sample.from_ndarray(nest.flatten(t), np.array([0.0]))) fs = FeatureSet.sample_rdd(sample_rdd, sequential_order=self.sequential_order, shuffle=self.shuffle) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs
def get_training_data(self): fs = FeatureSet.image_set(self.image_set, sequential_order=self.sequential_order, shuffle=self.shuffle) fs = fs.transform(MergeFeatureLabelImagePreprocessing()) fs = fs.transform(ImageFeatureToSample()) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs
def get_validation_data(self): if self.validation_image_set is not None: fs = FeatureSet.image_set(self.validation_image_set, sequential_order=self.sequential_order, shuffle=self.shuffle) fs = fs.transform(MergeFeatureLabelImagePreprocessing()) fs = fs.transform(ImageFeatureToSample()) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs return None
def get_training_data(self): sample_rdd = self.text_set.get_samples().map( lambda sample: Sample.from_jtensor( features=sample.features + sample.labels, labels=JTensor.from_ndarray(np.array([0.0])))) fs = FeatureSet.sample_rdd(sample_rdd, sequential_order=self.sequential_order, shuffle=self.shuffle) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs
def get_training_data(self): fs = self.dataset.transform(MergeFeatureLabelFeatureTransformer()) fs = fs.transform(SampleToMiniBatch(self.batch_size)) return fs