def test_fit(self): auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, name="auto_xgb_regressor", tree_method='hist') data, validation_data = get_data() auto_xgb_reg.fit(data=data, validation_data=validation_data, search_space=create_XGB_recipe(), n_sampling=4, epochs=1, metric="mse") best_model = auto_xgb_reg.get_best_model() assert 5 <= best_model.model.n_estimators <= 10 assert 2 <= best_model.model.max_depth <= 5
def test_fit(self): auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, name="auto_xgb_regressor", tree_method='hist') data, validation_data = get_data() auto_xgb_reg.fit(data=data, validation_data=validation_data, search_space=get_xgb_search_space(), n_sampling=4, epochs=1, metric="mae") best_model = auto_xgb_reg.get_best_model() assert 5 <= best_model.n_estimators <= 10 assert 2 <= best_model.max_depth <= 5 best_config = auto_xgb_reg.get_best_config() assert all(k in best_config.keys() for k in get_xgb_search_space().keys())
max_depth=list(max_depth_range), lr=lr, min_child_weight=min_child_weight) search_alg = None search_alg_params = None scheduler = None scheduler_params = None auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, name="auto_xgb_regressor", **config) auto_xgb_reg.fit(data=(X_train, y_train), validation_data=(X_val, y_val), metric="rmse", n_sampling=recipe.num_samples, search_space=recipe.search_space(), search_alg=search_alg, search_alg_params=None, scheduler=scheduler, scheduler_params=scheduler_params) print("Training completed.") best_model = auto_xgb_reg.get_best_model() y_hat = best_model.predict(X_val) rmse = best_model.evaluate(X_val, y_val, metrics=["rmse"]) print("Evaluate: the square root of mean square error is", rmse) ray_ctx.stop() sc.stop()