예제 #1
0
def orca_context_fixture():
    from zoo.orca import init_orca_context, stop_orca_context
    init_orca_context(cores=8,
                      init_ray_on_spark=True,
                      object_store_memory="1g")
    yield
    stop_orca_context()
    def test_forecast_tcmf_distributed(self):
        model = TCMFForecaster(y_iters=1,
                               init_FX_epoch=1,
                               max_FX_epoch=1,
                               max_TCN_epoch=1,
                               alt_iters=2)
        horizon = np.random.randint(1, 50)
        # construct data
        id = np.arange(300)
        data = np.random.rand(300, 480)
        input = dict({'id': id, 'y': data})

        from zoo.orca import init_orca_context, stop_orca_context

        init_orca_context(cores=4, spark_log_level="INFO", init_ray_on_spark=True,
                          object_store_memory="1g")
        model.fit(input, num_workers=4)

        with tempfile.TemporaryDirectory() as tempdirname:
            model.save(tempdirname)
            loaded_model = TCMFForecaster.load(tempdirname, distributed=False)
        yhat = model.predict(x=None, horizon=horizon, num_workers=4)
        yhat_loaded = loaded_model.predict(x=None, horizon=horizon, num_workers=4)
        yhat_id = yhat_loaded["id"]
        assert (yhat_id == id).all()
        yhat = yhat["prediction"]
        yhat_loaded = yhat_loaded["prediction"]
        assert yhat.shape == (300, horizon)
        np.testing.assert_equal(yhat, yhat_loaded)
        target_value = np.random.rand(300, horizon)
        target_value = dict({"y": target_value})
        assert model.evaluate(x=None, target_value=target_value, metric=['mse'])
        stop_orca_context()
예제 #3
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--dir', default='/tmp/data', metavar='N',
                        help='the folder store mnist data')
    parser.add_argument('--batch-size', type=int, default=256, metavar='N',
                        help='input batch size for training per executor(default: 256)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing per executor(default: 1000)')
    parser.add_argument('--epochs', type=int, default=2, metavar='N',
                        help='number of epochs to train (default: 2)')
    parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
                        help='learning rate (default: 0.001)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    parser.add_argument('--cluster_mode', type=str, default="local",
                        help='The mode for the Spark cluster. local or yarn.')
    args = parser.parse_args()

    torch.manual_seed(args.seed)

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST(args.dir, train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST(args.dir, train=False,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=False)

    if args.cluster_mode == "local":
        init_orca_context(cores=1, memory="2g")
    elif args.cluster_mode == "yarn":
        init_orca_context(
            cluster_mode="yarn-client", cores=4, num_nodes=2, memory="2g",
            driver_memory="10g", driver_cores=1,
            conf={"spark.rpc.message.maxSize": "1024",
                  "spark.task.maxFailures": "1",
                  "spark.driver.extraJavaOptions": "-Dbigdl.failure.retryTimes=1"})

    model = LeNet()
    model.train()
    criterion = nn.NLLLoss()

    adam = torch.optim.Adam(model.parameters(), args.lr)
    est = Estimator.from_torch(model=model, optimizer=adam, loss=criterion)
    est.fit(data=train_loader, epochs=args.epochs, validation_data=test_loader,
            validation_metrics=[Accuracy()], checkpoint_trigger=EveryEpoch())
    result = est.evaluate(data=test_loader, validation_metrics=[Accuracy()])
    for r in result:
        print(str(r))
    stop_orca_context()
def main(max_epoch):
    sc = init_orca_context(cores=4, memory="2g")

    # get DataSet
    # as_supervised returns tuple (img, label) instead of dict {'image': img, 'label':label}
    mnist_train = tfds.load(name="mnist", split="train", as_supervised=True)
    mnist_test = tfds.load(name="mnist", split="test", as_supervised=True)

    # Normalizes images, unit8 -> float32
    def normalize_img(image, label):
        return tf.cast(image, tf.float32) / 255., label

    mnist_train = mnist_train.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    mnist_test = mnist_test.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(20,
                               kernel_size=(5, 5),
                               strides=(1, 1),
                               activation='tanh',
                               input_shape=(28, 28, 1),
                               padding='valid'),
        tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
                                     strides=(2, 2),
                                     padding='valid'),
        tf.keras.layers.Conv2D(50,
                               kernel_size=(5, 5),
                               strides=(1, 1),
                               activation='tanh',
                               padding='valid'),
        tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
                                     strides=(2, 2),
                                     padding='valid'),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(500, activation='tanh'),
        tf.keras.layers.Dense(10, activation='softmax'),
    ])

    model.compile(optimizer=tf.keras.optimizers.RMSprop(),
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])

    est = Estimator.from_keras(keras_model=model)
    est.fit(data=mnist_train,
            batch_size=320,
            epochs=max_epoch,
            validation_data=mnist_test)

    result = est.evaluate(mnist_test)
    print(result)

    est.save_keras_model("/tmp/mnist_keras.h5")
    stop_orca_context()
예제 #5
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch Tensorboard Example')

    parser.add_argument('--cluster_mode',
                        type=str,
                        default="local",
                        help='The cluster mode, such as local, yarn or k8s.')
    args = parser.parse_args()
    if args.cluster_mode == "local":
        init_orca_context()
    elif args.cluster_mode == "yarn":
        init_orca_context(cluster_mode=args.cluster_mode, cores=4, num_nodes=2)

    writer = SummaryWriter('runs/fashion_mnist_experiment_1')
    # constant for classes
    classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')

    # plot some random training images
    dataiter = iter(train_data_creator(config={}))
    images, labels = dataiter.next()

    # create grid of images
    img_grid = torchvision.utils.make_grid(images)

    # show images
    matplotlib_imshow(img_grid, one_channel=True)

    # write to tensorboard
    writer.add_image('four_fashion_mnist_images', img_grid)

    # inspect the model using tensorboard
    writer.add_graph(model_creator(config={}), images)
    writer.close()

    # training loss vs. epochs
    criterion = nn.CrossEntropyLoss()
    orca_estimator = Estimator.from_torch(model=model_creator,
                                          optimizer=optimizer_creator,
                                          loss=criterion,
                                          backend="torch_distributed")
    stats = orca_estimator.fit(train_data_creator, epochs=5, batch_size=4)

    for stat in stats:
        writer.add_scalar("training_loss", stat['train_loss'], stat['epoch'])
    print("Train stats: {}".format(stats))
    val_stats = orca_estimator.evaluate(validation_data_creator)
    print("Validation stats: {}".format(val_stats))
    orca_estimator.shutdown()

    stop_orca_context()
예제 #6
0
def main(max_epoch):
    sc = init_orca_context(cores=4, memory="2g")

    # get DataSet
    mnist_train = tfds.load(name="mnist", split="train")
    mnist_test = tfds.load(name="mnist", split="test")

    # Normalizes images
    def normalize_img(data):
        data['image'] = tf.cast(data["image"], tf.float32) / 255.
        return data

    mnist_train = mnist_train.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    mnist_test = mnist_test.map(
        normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    # tensorflow inputs
    images = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1))
    # tensorflow labels
    labels = tf.placeholder(dtype=tf.int32, shape=(None, ))

    with slim.arg_scope(lenet.lenet_arg_scope()):
        logits, end_points = lenet.lenet(images,
                                         num_classes=10,
                                         is_training=True)

    loss = tf.reduce_mean(
        tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels))

    acc = accuracy(logits, labels)

    # create an estimator
    est = Estimator.from_graph(inputs=images,
                               outputs=logits,
                               labels=labels,
                               loss=loss,
                               optimizer=tf.train.AdamOptimizer(),
                               metrics={"acc": acc})
    est.fit(data=mnist_train,
            batch_size=320,
            epochs=max_epoch,
            validation_data=mnist_test)

    result = est.evaluate(mnist_test)
    print(result)

    est.save_tf_checkpoint("/tmp/lenet/model")
    stop_orca_context()
예제 #7
0
def orca_context_fixture(request):
    import os
    from zoo.orca import OrcaContext, init_orca_context, stop_orca_context
    OrcaContext._eager_mode = True
    access_key_id = os.getenv("AWS_ACCESS_KEY_ID")
    secret_access_key = os.getenv("AWS_SECRET_ACCESS_KEY")
    if access_key_id is not None and secret_access_key is not None:
        env = {"AWS_ACCESS_KEY_ID": access_key_id,
               "AWS_SECRET_ACCESS_KEY": secret_access_key}
    else:
        env = None
    sc = init_orca_context(cores=4, spark_log_level="INFO",
                           env=env, object_store_memory="1g")
    yield sc
    stop_orca_context()
예제 #8
0
def orca_context_fixture():
    sc = init_orca_context(cores=8)

    def to_array_(v):
        return v.toArray().tolist()

    def flatten_(v):
        result = []
        for elem in v:
            result.extend(elem.toArray().tolist())
        return result

    spark = SparkSession(sc)
    spark.udf.register("to_array", to_array_, ArrayType(DoubleType()))
    spark.udf.register("flatten", flatten_, ArrayType(DoubleType()))
    yield
    stop_orca_context()
예제 #9
0
def main(cluster_mode, max_epoch, file_path, batch_size, platform,
         non_interactive):
    import matplotlib
    if not non_interactive and platform == "mac":
        matplotlib.use('qt5agg')

    if cluster_mode == "local":
        init_orca_context(cluster_mode="local", cores=4, memory="3g")
    elif cluster_mode == "yarn":
        init_orca_context(cluster_mode="yarn-client",
                          num_nodes=2,
                          cores=2,
                          driver_memory="3g")

    load_data(file_path)
    img_dir = os.path.join(file_path, "train")
    label_dir = os.path.join(file_path, "train_masks")

    # Here we only take the first 1000 files for simplicity
    df_train = pd.read_csv(os.path.join(file_path, 'train_masks.csv'))
    ids_train = df_train['img'].map(lambda s: s.split('.')[0])
    ids_train = ids_train[:1000]

    x_train_filenames = []
    y_train_filenames = []
    for img_id in ids_train:
        x_train_filenames.append(os.path.join(img_dir,
                                              "{}.jpg".format(img_id)))
        y_train_filenames.append(
            os.path.join(label_dir, "{}_mask.gif".format(img_id)))

    x_train_filenames, x_val_filenames, y_train_filenames, y_val_filenames = \
        train_test_split(x_train_filenames, y_train_filenames, test_size=0.2, random_state=42)

    def load_and_process_image(path):
        array = mpimg.imread(path)
        result = np.array(Image.fromarray(array).resize(size=(128, 128)))
        result = result.astype(float)
        result /= 255.0
        return result

    def load_and_process_image_label(path):
        array = mpimg.imread(path)
        result = np.array(Image.fromarray(array).resize(size=(128, 128)))
        result = np.expand_dims(result[:, :, 1], axis=-1)
        result = result.astype(float)
        result /= 255.0
        return result

    train_images = np.stack(
        [load_and_process_image(filepath) for filepath in x_train_filenames])
    train_label_images = np.stack([
        load_and_process_image_label(filepath)
        for filepath in y_train_filenames
    ])
    val_images = np.stack(
        [load_and_process_image(filepath) for filepath in x_val_filenames])
    val_label_images = np.stack([
        load_and_process_image_label(filepath) for filepath in y_val_filenames
    ])
    train_shards = XShards.partition({
        "x": train_images,
        "y": train_label_images
    })
    val_shards = XShards.partition({"x": val_images, "y": val_label_images})

    # Build the U-Net model
    def conv_block(input_tensor, num_filters):
        encoder = layers.Conv2D(num_filters, (3, 3),
                                padding='same')(input_tensor)
        encoder = layers.Activation('relu')(encoder)
        encoder = layers.Conv2D(num_filters, (3, 3), padding='same')(encoder)
        encoder = layers.Activation('relu')(encoder)
        return encoder

    def encoder_block(input_tensor, num_filters):
        encoder = conv_block(input_tensor, num_filters)
        encoder_pool = layers.MaxPooling2D((2, 2), strides=(2, 2))(encoder)

        return encoder_pool, encoder

    def decoder_block(input_tensor, concat_tensor, num_filters):
        decoder = layers.Conv2DTranspose(num_filters, (2, 2),
                                         strides=(2, 2),
                                         padding='same')(input_tensor)
        decoder = layers.concatenate([concat_tensor, decoder], axis=-1)
        decoder = layers.Activation('relu')(decoder)
        decoder = layers.Conv2D(num_filters, (3, 3), padding='same')(decoder)
        decoder = layers.Activation('relu')(decoder)
        decoder = layers.Conv2D(num_filters, (3, 3), padding='same')(decoder)
        decoder = layers.Activation('relu')(decoder)
        return decoder

    inputs = layers.Input(shape=(128, 128, 3))  # 128
    encoder0_pool, encoder0 = encoder_block(inputs, 16)  # 64
    encoder1_pool, encoder1 = encoder_block(encoder0_pool, 32)  # 32
    encoder2_pool, encoder2 = encoder_block(encoder1_pool, 64)  # 16
    encoder3_pool, encoder3 = encoder_block(encoder2_pool, 128)  # 8
    center = conv_block(encoder3_pool, 256)  # center
    decoder3 = decoder_block(center, encoder3, 128)  # 16
    decoder2 = decoder_block(decoder3, encoder2, 64)  # 32
    decoder1 = decoder_block(decoder2, encoder1, 32)  # 64
    decoder0 = decoder_block(decoder1, encoder0, 16)  # 128
    outputs = layers.Conv2D(1, (1, 1), activation='sigmoid')(decoder0)

    net = models.Model(inputs=[inputs], outputs=[outputs])

    # Define custom metrics
    def dice_coeff(y_true, y_pred):
        smooth = 1.
        # Flatten
        y_true_f = tf.reshape(y_true, [-1])
        y_pred_f = tf.reshape(y_pred, [-1])
        intersection = tf.reduce_sum(y_true_f * y_pred_f)
        score = (2. * intersection + smooth) / \
                (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)
        return score

    # Define custom loss function
    def dice_loss(y_true, y_pred):
        loss = 1 - dice_coeff(y_true, y_pred)
        return loss

    def bce_dice_loss(y_true, y_pred):
        loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(
            y_true, y_pred)
        return loss

    # compile model
    net.compile(optimizer=tf.keras.optimizers.Adam(2e-3), loss=bce_dice_loss)
    print(net.summary())

    # create an estimator from keras model
    est = Estimator.from_keras(keras_model=net)
    # fit with estimator
    est.fit(data=train_shards, batch_size=batch_size, epochs=max_epoch)
    # evaluate with estimator
    result = est.evaluate(val_shards)
    print(result)
    # predict with estimator
    val_shards.cache()
    val_image_shards = val_shards.transform_shard(
        lambda val_dict: {"x": val_dict["x"]})
    pred_shards = est.predict(data=val_image_shards, batch_size=batch_size)
    pred = pred_shards.collect()[0]["prediction"]
    val_image_label = val_shards.collect()[0]
    val_image = val_image_label["x"]
    val_label = val_image_label["y"]
    if not non_interactive:
        # visualize 5 predicted results
        plt.figure(figsize=(10, 20))
        for i in range(5):
            img = val_image[i]
            label = val_label[i]
            predicted_label = pred[i]

            plt.subplot(5, 3, 3 * i + 1)
            plt.imshow(img)
            plt.title("Input image")

            plt.subplot(5, 3, 3 * i + 2)
            plt.imshow(label[:, :, 0], cmap='gray')
            plt.title("Actual Mask")
            plt.subplot(5, 3, 3 * i + 3)
            plt.imshow(predicted_label, cmap='gray')
            plt.title("Predicted Mask")
        plt.suptitle("Examples of Input Image, Label, and Prediction")

        plt.show()

    stop_orca_context()
예제 #10
0
 def teardown_method(self, method):
     stop_orca_context()
예제 #11
0
def main():
    anchors = yolo_anchors
    anchor_masks = yolo_anchor_masks

    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir",
                        dest="data_dir",
                        help="Required. The path where data locates.")
    parser.add_argument(
        "--output_data",
        dest="output_data",
        default=tempfile.mkdtemp(),
        help="Required. The path where voc parquet data locates.")
    parser.add_argument("--data_year",
                        dest="data_year",
                        default="2009",
                        help="Required. The voc data date.")
    parser.add_argument("--split_name_train",
                        dest="split_name_train",
                        default="train",
                        help="Required. Split name.")
    parser.add_argument("--split_name_test",
                        dest="split_name_test",
                        default="val",
                        help="Required. Split name.")
    parser.add_argument("--names",
                        dest="names",
                        help="Required. The path where class names locates.")
    parser.add_argument("--weights",
                        dest="weights",
                        default="./checkpoints/yolov3.weights",
                        help="Required. The path where weights locates.")
    parser.add_argument("--checkpoint",
                        dest="checkpoint",
                        default="./checkpoints/yolov3.tf",
                        help="Required. The path where checkpoint locates.")
    parser.add_argument(
        "--checkpoint_folder",
        dest="checkpoint_folder",
        default="./checkpoints",
        help="Required. The path where saved checkpoint locates.")
    parser.add_argument("--epochs",
                        dest="epochs",
                        type=int,
                        default=2,
                        help="Required. epochs.")
    parser.add_argument("--batch_size",
                        dest="batch_size",
                        type=int,
                        default=16,
                        help="Required. epochs.")
    parser.add_argument("--cluster_mode",
                        dest="cluster_mode",
                        default="local",
                        help="Required. Run on local/yarn/k8s mode.")
    parser.add_argument("--class_num",
                        dest="class_num",
                        type=int,
                        default=20,
                        help="Required. class num.")
    parser.add_argument(
        "--worker_num",
        type=int,
        default=1,
        help="The number of slave nodes to be used in the cluster."
        "You can change it depending on your own cluster setting.")
    parser.add_argument(
        "--cores",
        type=int,
        default=4,
        help="The number of cpu cores you want to use on each node. "
        "You can change it depending on your own cluster setting.")
    parser.add_argument(
        "--memory",
        type=str,
        default="20g",
        help="The memory you want to use on each node. "
        "You can change it depending on your own cluster setting.")
    parser.add_argument(
        "--object_store_memory",
        type=str,
        default="10g",
        help="The memory you want to use on each node. "
        "You can change it depending on your own cluster setting.")
    parser.add_argument('--k8s_master',
                        type=str,
                        default="",
                        help="The k8s master. "
                        "It should be k8s://https://<k8s-apiserver-host>: "
                        "<k8s-apiserver-port>.")
    parser.add_argument("--container_image",
                        type=str,
                        default="",
                        help="The runtime k8s image. ")
    parser.add_argument('--k8s_driver_host',
                        type=str,
                        default="",
                        help="The k8s driver localhost.")
    parser.add_argument('--k8s_driver_port',
                        type=str,
                        default="",
                        help="The k8s driver port.")

    options = parser.parse_args()

    # convert yolov3 weights
    yolo = YoloV3(classes=80)
    load_darknet_weights(yolo, options.weights)
    yolo.save_weights(options.checkpoint)

    def model_creator(config):
        model = YoloV3(DEFAULT_IMAGE_SIZE,
                       training=True,
                       classes=options.class_num)
        anchors = yolo_anchors
        anchor_masks = yolo_anchor_masks

        model_pretrained = YoloV3(DEFAULT_IMAGE_SIZE,
                                  training=True,
                                  classes=80)
        model_pretrained.load_weights(options.checkpoint)

        model.get_layer('yolo_darknet').set_weights(
            model_pretrained.get_layer('yolo_darknet').get_weights())
        freeze_all(model.get_layer('yolo_darknet'))

        optimizer = tf.keras.optimizers.Adam(lr=1e-3)
        loss = [
            YoloLoss(anchors[mask], classes=options.class_num)
            for mask in anchor_masks
        ]
        model.compile(optimizer=optimizer, loss=loss, run_eagerly=False)
        return model

    # prepare data
    class_map = {
        name: idx
        for idx, name in enumerate(open(options.names).read().splitlines())
    }
    dataset_path = os.path.join(options.data_dir, "VOCdevkit")
    voc_train_path = os.path.join(options.output_data, "train_dataset")
    voc_val_path = os.path.join(options.output_data, "val_dataset")

    write_parquet(format="voc",
                  voc_root_path=dataset_path,
                  output_path="file://" + voc_train_path,
                  splits_names=[(options.data_year, options.split_name_train)],
                  classes=class_map)
    write_parquet(format="voc",
                  voc_root_path=dataset_path,
                  output_path="file://" + voc_val_path,
                  splits_names=[(options.data_year, options.split_name_test)],
                  classes=class_map)

    output_types = {
        "image": tf.string,
        "label": tf.float32,
        "image_id": tf.string
    }
    output_shapes = {"image": (), "label": (None, 5), "image_id": ()}

    def train_data_creator(config, batch_size):
        train_dataset = read_parquet(format="tf_dataset",
                                     path=voc_train_path,
                                     output_types=output_types,
                                     output_shapes=output_shapes)
        train_dataset = train_dataset.map(
            lambda data_dict: (data_dict["image"], data_dict["label"]))
        train_dataset = train_dataset.map(parse_data_train)
        train_dataset = train_dataset.shuffle(buffer_size=512)
        train_dataset = train_dataset.batch(batch_size)
        train_dataset = train_dataset.map(lambda x, y: (
            transform_images(x, DEFAULT_IMAGE_SIZE),
            transform_targets(y, anchors, anchor_masks, DEFAULT_IMAGE_SIZE)))
        train_dataset = train_dataset.prefetch(
            buffer_size=tf.data.experimental.AUTOTUNE)
        return train_dataset

    def val_data_creator(config, batch_size):
        val_dataset = read_parquet(format="tf_dataset",
                                   path=voc_val_path,
                                   output_types=output_types,
                                   output_shapes=output_shapes)
        val_dataset = val_dataset.map(lambda data_dict:
                                      (data_dict["image"], data_dict["label"]))
        val_dataset = val_dataset.map(parse_data_train)
        val_dataset = val_dataset.batch(batch_size)
        val_dataset = val_dataset.map(lambda x, y: (
            transform_images(x, DEFAULT_IMAGE_SIZE),
            transform_targets(y, anchors, anchor_masks, DEFAULT_IMAGE_SIZE)))
        return val_dataset

    callbacks = [
        ReduceLROnPlateau(verbose=1),
        EarlyStopping(patience=3, verbose=1),
        ModelCheckpoint(options.checkpoint_folder + '/yolov3_train_{epoch}.tf',
                        verbose=1,
                        save_weights_only=True),
        TensorBoard(log_dir='logs')
    ]

    if options.cluster_mode == "local":
        init_orca_context(cluster_mode="local",
                          cores=options.cores,
                          num_nodes=options.worker_num,
                          memory=options.memory,
                          init_ray_on_spark=True,
                          enable_numa_binding=False,
                          object_store_memory=options.object_store_memory)
    elif options.cluster_mode == "k8s":
        init_orca_context(cluster_mode="k8s",
                          master=options.k8s_master,
                          container_image=options.container_image,
                          init_ray_on_spark=True,
                          enable_numa_binding=False,
                          num_nodes=options.worker_num,
                          cores=options.cores,
                          memory=options.memory,
                          object_store_memory=options.object_store_memory,
                          conf={
                              "spark.driver.host": options.driver_host,
                              "spark.driver.port": options.driver_port
                          })
    elif options.cluster_mode == "yarn":
        init_orca_context(cluster_mode="yarn-client",
                          cores=options.cores,
                          num_nodes=options.worker_num,
                          memory=options.memory,
                          init_ray_on_spark=True,
                          enable_numa_binding=False,
                          object_store_memory=options.object_store_memory)

    trainer = Estimator.from_keras(model_creator=model_creator)

    trainer.fit(train_data_creator,
                epochs=options.epochs,
                batch_size=options.batch_size,
                steps_per_epoch=3473 // options.batch_size,
                callbacks=callbacks,
                validation_data=val_data_creator,
                validation_steps=3581 // options.batch_size)
    stop_orca_context()