예제 #1
0
def predict(model_path, img_path, partition_num=4):
    inputs = "ToFloat:0"
    outputs = [
        "num_detections:0", "detection_boxes:0", "detection_scores:0",
        "detection_classes:0"
    ]
    detector = TFNet(model_path, inputs, outputs)
    model = Sequential()
    # Transpose TensorFlow NHWC format to Analytics Zoo NCHW format.
    model.add(Transpose([(2, 4), (2, 3)]))
    model.add(Contiguous())
    model.add(detector)
    # Select the detection_boxes from the output.
    model.add(SelectTable(2))
    image_set = ImageSet.read(img_path, sc, partition_num)
    transformer = ChainedPreprocessing(
        [ImageResize(256, 256),
         ImageMatToTensor(),
         ImageSetToSample()])
    transformed_image_set = image_set.transform(transformer)
    output = model.predict_image(transformed_image_set.to_image_frame(),
                                 batch_per_partition=1)
    # Print the detection box with the highest score of the first prediction result.
    result = output.get_predict().first()
    print(result[1][0])
예제 #2
0
def predict(model_path, img_path, partition_num=4):
    inputs = "image_tensor:0"
    outputs = ["num_detections:0", "detection_boxes:0",
               "detection_scores:0", "detection_classes:0"]

    model = TFNet(model_path, inputs, outputs)
    image_set = ImageSet.read(img_path, sc, partition_num)
    transformer = ChainedPreprocessing([ImageResize(256, 256), ImageMatToTensor(format="NHWC"),
                                        ImageSetToSample()])
    transformed_image_set = image_set.transform(transformer)
    output = model.predict_image(transformed_image_set.to_image_frame(), batch_per_partition=1)
    # Print the detection result of the first image.
    result = ImageSet.from_image_frame(output).get_predict().first()
    print(result)